

To

my wife Ulla

for helping me through difficult times

and for all the support and encouragement

which she has given me.

Timor:

An Object- and

Component Oriented

Language

J. Leslie Keedy

 i

Preface

This book records one of the results of an Odyssey which has lasted for

more than fifty years of my life, beginning with my work in the design team of

the VME operating system for the ICL 2900 Series of computers in Kidsgrove,

England. This was followed by my founding the MONADS operating system

group at Monash University in Melbourne Australia, with follow up work on

MONADS in the groups which I later led at the University of Darmstadt in

Germany, the University of Newcastle, N.S.W., Australia and the University of

Bremen in Germany. My final professional move was to the University of Ulm

in Germany, where I founded the SPEEDOS project and the Timor Project in the

Department of Computer Structures.

At heart I am an operating system designer, but I have also long been inter-

ested in programming language design. This is inevitable because operating sys-

tem designers often develop new concepts which cannot easily be programmed

in existing high level languages. From the programming language perspective I

have been fortunate to have been accompanied through most of my career by Dr.

Mark Evered, who started his PhD work at Monash and then accompanied me to

Darmstadt, where he produced an excellent PhD based on the LEIBNIZ pro-

gramming language [1], which laid particular emphasis on information hiding

module structures and on an abstract concept for collections of items in pro-

gramming languages, both of which subsequently played an important role in

Timor. Later when I returned from Australia to Germany he re-joined the team

in Bremen and subsequently moved with me to Ulm, where he informally led

our programming language research work, which since Bremen included Dr.

Gisela Menger, whose PhD work [2] concentrated mainly on developing con-

cepts associated with collections, and Dr. Axel Schmolitzky, whose PhD work

[3] laid the foundations for the Timor idea of co-types. Soon after Dr. Evered

and Dr. Schmolitzky had left the group we were joined by Dr. Christian

Heinlein, whose knowledge of other programming languages greatly helped in

formulating Timor concepts, despite continuing his work on a quite different

dissertation. Unfortunately Dr. Evered had left to take a position in Australia

before the work specifically concerned with Timor began.

 ii

The main aim of Timor at that time was to provide a suitable programming

language for SPEEDOS [4], which was our operating system research project in

Ulm, as a successor to the MONADS project. A new language was necessary

because key features of SPEEDOS could not be programmed in conventional

languages. A fundamental feature of SPEEDOS (as previously of MONADS)

was that it eliminated a conventional file system by providing a persistent virtual

memory which was populated by information hiding modules [5] as the basic

software objects visible to applications. An important consequence of this idea

was that Timor had to support a much more rigorous concept of objects than is

common in other object-oriented languages, e.g. by separating type definitions

from their potentially multiple implementations and by separating n-ary and

similar operations from instance methods. Furthermore SPEEDOS required lin-

guistic support for its solution of the confinement problem (which is still the

most serious security problem in operating systems
1
); this allows each module to

have its own specialised, user programmed 'firewalls' using a new type which

we called qualifying types.

Following my retirement I continued to develop the ideas from the MON-

ADS and SPEEDOS projects, considerably extending and improving on the

original versions and working out how to implement some of the wilder con-

cepts efficiently, such as the worldwide unique virtual memory and addressing.

The final results of that work include the formulation of a new model for secure

operating system design. This is described in a two volume book entitled "Mak-

ing Operating Systems Secure". The first volume develops an overview of this

new model (which I call ModelOS), while the second volume provides a de-

tailed explanation of how the model can be implemented. ModelOS currently

exists only as a design, since an implementation would be extremely expensive,

involving a new hardware design for a CPU (competition for Intel) and an oper-

ating system comparable in its scope with those of Microsoft and Apple sys-

tems.

The work on Timor has been adapted to suit the ModelOS design, and the

resultant language is described in this book. Consequently Timor is an object-

oriented persistent programming language. The basic software units seen by us-

ers of ModelOS are not directly comparable with files in conventional systems

but are modules which strictly conform to the information hiding principle. Ti-

mor allows its programmers to separate the definition of these units from their

implementations, such that a type can have multiple implementations. This

1
 The confinement problem is the issue of how to prevent information from escaping

from a module, i.e. the problem which we hears about every day as hackers penetrate

systems and steal or alter information.

 iii

means for example that collection types can serve a role similar to data files in

conventional systems where the different implementations might correspond to

the different implementation approaches in current systems, e.g. as sequential,

indexed sequential files or as B-Trees, etc. But Timor (and ModelOS) modules

can serve quite different purposes, e.g. as multiple entrypoint programs, as

mathematical libraries, as module directories, as operating system modules, etc.

For a user or application programmer, the code of a module is inseparable

from the data structures which it uses, and this has advantages for the security of

a system. A hacker cannot simply write a program to access a data file, as he can

in conventional systems. The ModelOS kernel ensures that the data can only be

accessed via the information hiding routines as defined in the various implemen-

tations of its type definition.

The main purpose of this book is to introduce the Timor programming lan-

guage, and in particular the new and/or unconventional ideas which it contains,

such as the separation of types from implementations, its unusual approach to

inheritance, attribute types, qualifying types, co-types, its support for genericity

(including generic functions) and its approach handling collections, as well as

some special features for supporting the ModelOS operating system.

 Leslie Keedy

 BREMEN 2021

 iv

Table of Contents

Preface ... i

Table of Contents.. iv

List of Figures ... xiii

Chapter 1 Introduction ... 1

1 The Aims of Timor ... 1

1.1 Support for ModelOS Applications .. 1

1.2 Support for the Development of a Genuine Components

Industry ... 5

1.3 Research into Object-Oriented Programming 5

1.4 Support for Modelling and Implementing Database

Applications .. 5

2 An Overview of Timor ... 6

3 Designing and Implementing Systems ... 6

Chapter 2 Control Structures .. 8

1 Iteration Statements .. 8

2 Conditional Statements ... 8

3 With Blocks ... 9

3.1 What can be Nominated in a Timor Block ... 9

3.2 Interpreting Identifiers in a With Block .. 10

3.3 The Scope of a With Block .. 11

4 Exception Handling .. 11

5 Further Syntax... 12

6 Pragmas ... 12

 v

Chapter 3 The Basic Structure of Timor Programs 13

1 Identifiers .. 13

2 Enumeration Types ... 14

2.1 Simple Enumeration Types .. 14

2.2 Sequences ... 15

2.3 Circular ... 15

2.4 Lists of Enumeration Values .. 16

3 Type Definitions ... 16

4 Implementations.. 17

4.1 Retained Data.. 18

4.2 Multiple Implementations... 18

5 Instance Methods .. 19

6 Open and Close Methods .. 20

7 Callback Methods ... 21

8 Parameters ... 21

8.1 Parameter Declarations ... 21

8.2 Default Parameter Values ... 21

9 Protected Methods .. 22

10 Internal Methods ... 22

11 An Example Type Definition ... 22

12 An Example Implementation .. 23

Chapter 4 Instances, Values, Objects and Modules 26

1 The Basic Types.. 27

2 Value Variables... 27

3 References and Objects ... 28

4 Capabilities and File Modules .. 29

5 Library Modules ... 30

6 Conversion between Modes .. 31

7 Numerical Representation .. 31

8 Instance Records ... 31

9 Shared Objects and Collections .. 31

 vi

Chapter 5 Abstract Variables and Records .. 33

1 Standard Implementations of Abstract Variables 34

2 Records ... 35

3 Using the Methods .. 36

4 Final and Constant Values .. 36

5 Fixed and Constant References .. 37

Chapter 6 Inheritance in Conventional Object Orientation 38

1 Subtyping and Subtype Polymorphism .. 38

2 Diamond Inheritance .. 40

3 Multiple and Repeated Inheritance ... 41

4 Method Redefinition ... 41

5 Subclassing and Code-Reuse .. 41

6 Overriding Methods .. 42

7 Conclusion .. 42

Chapter 7 Type Inheritance in Timor ... 43

1 Single Inheritance ... 43

2 Method Redefinition ... 43

3 Views .. 44

4 Multiple and Repeated Inheritance ... 45

5 Diamond Inheritance .. 47

6 Inheriting from a Common Abstract Ancestor ... 48

7 Type Rules .. 50

8 Handles ... 50

9 Cast Statements ... 51

10 Comparison Operators and Subtyping .. 51

Chapter 8 Implementations and Code Re-Use in Timor 53

1 Re-Use Variables .. 53

2 Clashing Methods in Re-Use Variables .. 54

3 Reversing the Re-Use Relationship of Subtypes 55

4 Re-Use of Independent Types .. 55

5 Overriding Code ... 56

6 Implementing Views ... 56

 vii

7 Implementing Multiple and Repeated Inheritance 56

8 Implementing Diamond Inheritance ... 57

9 Implementing Types with a Common Abstract Ancestor 58

Chapter 9 Attribute Types ... 59

1 Defining and Implementing Attribute Types.. 59

2 Static Use of Attributes ... 61

3 Instantiating Attribute Types .. 61

4 Attaching Attributes Dynamically to Objects .. 61

5 Removing Attributes from Objects ... 62

6 Casting with Attributes ... 62

7 Final Remark ... 63

Chapter 10 Qualifying Types ... 64

1 Qualifiers: The Basic Idea .. 65

1.1 Call-In Bracket Methods .. 65

1.2 The Body Statement ... 66

1.3 Augmenting Bracket Routines ... 66

1.4 Testing Bracket Methods .. 66

1.5 Replacing Bracket Methods ... 67

1.6 Multiple Qualifiers ... 67

1.7 Call-Out Bracket Methods .. 67

2 Qualifying All the Methods of Any Type in the Same Way 69

3 Distinguishing Between Reader and Writer Methods 70

4 Qualifiers with Instance Methods ... 71

5 Qualifying Specific Methods .. 73

6 Call-Out Methods ... 75

7 Combining Call-Out and Call-In Brackets ... 76

8 Instantiating and Using Qualifiers .. 79

8.1 Qualifying Target Objects Dynamically .. 79

8.2 Qualifying Target Objects Statically .. 80

Chapter 11 Co-Types .. 83

1 The Basic Structure of a Co-Type .. 83

2 The Maker Section .. 84

 viii

3 The Instance Section ... 85

4 The Binary Section ... 86

5 A Simple Co-type Implementation ... 86

6 Accessing Parameters at the Implementation Level 87

7 Derivation and Adjustment of Co-Types.. 89

8 Syntactic Features Limited to Co-Types in an Adjustment Hierarchy 90

9 Covariant Makers .. 91

10 Covariant Instance Methods ... 91

11 Modifying Co-Type Definitions ... 91

12 Merging Co-Type Methods which Result from Diamond Inheritance 91

13 Merging Multiply Adjusted Co-Types for Parts 92

14 Implementing Adjustment Hierarchies ... 92

15 A Further Example of Co-Types .. 93

15.1 Co-types for Standard Input-Output Operations 93

15.2 Adjusting Input-Output Methods in Co-types 96

15.3 Using Inout Methods .. 97

16 Access to Co-Types and other Components ... 99

Chapter 12 Generic Types and Implementations .. 101

1 Generic Templates .. 101

2 Type Templates... 102

3 Implementation Templates ... 103

4 Actualising Templates .. 103

5 Deriving Templates by Single Inheritance ... 103

5.1 Deriving Templates by Extension .. 103

5.2 Deriving Templates by Inclusion ... 105

6 Deriving Type Templates by Multiple Inheritance 106

6.1 Deriving from Templates with a Common Ancestor Template 106

6.2 Deriving from Templates without a Common Ancestor

Template ... 106

7 Generically Defined Views ... 107

8 Implementing Generic Types and Code Re-Use 107

9 Implementing Generic Co-Types ... 107

10 Generic Function Parameters .. 108

 ix

Chapter 13 The Basic Timor Collection Types .. 109

1 The Collection Types .. 111

1.1 The Abstract Type Collection .. 111

1.2 The Concrete Type Bag .. 112

1.3 The Ordered Types ... 113

1.4 The Unordered Duplicate Free Types .. 115

1.5 The Ordered Duplicate Free Types .. 116

2 The Collection Implementations .. 118

2.1 A Consolidated Definition of the Type List 118

2.2 An Array Implementation of the Generic Type List 119

2.3 Implementing the Remaining Types .. 122

3 Co-Types for the TCL Collection Hierarchy .. 129

3.1 A Co-Type for the Base Type Collection 129

3.2 Implementing the Co-Type Adjustment Hierarchy 132

4 Collection Syntax .. 137

4.1 Collection Literals: ... 137

4.2 Subcollection Selection .. 137

4.3 Element Selection ... 138

4.4 Type Conversion ... 139

4.5 Collection Operators ... 139

4.6 Boolean Expressions ... 139

4.7 Iteration ... 140

4.8 Implementing the for Statement ... 141

Chapter 14 Generic Function Parameters .. 145

1 Function Clauses ... 146

2 Motivation for Static Function Parameters ... 146

3 Defining Static Function Parameters in Type Templates 147

4 Using Static Function Parameters in Implementations 148

5 Actualising Static Function Parameters .. 150

5.1 A Suggested Implementation ... 150

Chapter 15 Support for ModelOS ... 152

1 Returning Values of User-Defined Types .. 152

 x

2 Handling ModelOS Access Rights ... 153

3 Calls to the ModelOS Kernel .. 154

3.1 Executing Simple Kernel Instructions .. 154

3.2 Executing Kernel Instructions involving Access and Control

Rights .. 155

3.3 Normal Execution of Inter-Module and Similar Calls 156

3.4 Callback Calls ... 156

3.5 Direct Execution of Inter-Module and Similar Calls 156

4 Synchronisation and Semaphores ... 158

4.1 General Semaphores ... 158

4.2 Resource Set Semaphores ... 158

4.3 Reader-Writer Exclusion .. 159

4.4 Access to Basic Semaphore Variables ... 159

4.5 Higher Level Synchronisation .. 160

Chapter 16 Why Timor Does Not Need Wildcards 161

1 Upper Bounded Wildcards ... 161

1.1 Why Is a List of Students not a Subtype of a List of Persons? 162

1.2 The Wildcard Solution .. 163

1.3 The First Timor Solution: Generic Co-Types 163

1.4 Using Restricted Variables and Parameters as an Alternative to

Upper Bounded Wildcards ... 165

1.5 The Restrictor OOPS .. 165

2 Unbounded Wildcards .. 166

2.1 Handles and Unbounded Wildcards ... 166

2.2 Further Aspects of Working with Handles 168

2.3 Casts Involving Co-types.. 169

3 Lower Bounded Wildcards ... 170

3.1 Comparators and Co-Types .. 170

3.2 Type Matching and Casts ... 171

3.3 Complementing Casts with Restrictions .. 172

Chapter 17 Concluding Remarks .. 175

1 Support for ModelOS Applications .. 175

 xi

2 Flexible Support for the Design and Development of Software

Components .. 176

3 Improving the Object Oriented Paradigm .. 177

4 Support for Database Applications ... 178

4.1 Remote Databases ... 179

4.2 Separating Types from Implementations.. 179

4.3 Kinds of Database ... 179

4.4 Flexible Database Record Entries .. 180

4.5 Persistence .. 180

4.6 Big Data .. 180

APPENDIX I A Timor Object Model ... 182

1 Instance Records ... 182

2 The Object Table .. 183

3 Capabilities ... 184

APPENDIX II The Timor Operators .. 186

1 The Null Value and Null Exceptions .. 186

2 Arithmetic Operators .. 186

2.1 Operations on Numerical Values .. 186

2.2 Collection Operators ... 186

2.3 Operations on Dynamic Attributes ... 186

3 Assignment Operators .. 187

3.1 Value Assignments ... 187

3.2 Reference and Capability Assignments .. 188

3.3 Assignments Involving Restrictions ... 188

3.4 Shorthand Assignment Operators ... 188

4 New, Create, Delete and Dereferencing Operators 188

5 Comparison Operators .. 189

5.1 Comparing Values .. 189

5.2 User-Defined Types: Comparing Using the Comparison

Operators ... 190

5.3 Comparing Subtypes via the Value Operators 190

5.4 Comparing References and Capabilities .. 190

6 Logical Operators ... 191

 xii

7 The Conditional Operator ... 191

8 Bit Manipulation Operators .. 191

9 Defining/Redefining Operators in Co-Types ... 191

9.1 Associating Binary Comparison Methods with Operators 191

9.2 Associating Binary Operations with Operators 192

9.3 Definitions in Multiple Co-Types .. 192

Appendix III: EBNF for the Timor Programming Language 193

References .. 197

Bibliography ... 201

Acknowledgements .. 205

 xiii

 List of Figures

Figure 1.1: A Bank Accounts Module ... 2

Figure 1.2: A Compendium of Games ... 3

Figure 1.3 Access Rights expressed as Semantic Operations 4

Figure 6.1: Diamond Inheritance ... 40

Figure 6.2: Multiple and Repeated Inheritance ... 41

Figure 7.1: Structure of the TCL Collection Types 49

Figure 10.1: A Normal Method Invocation ... 65

Figure 10.2: A Qualifying Type with a Call-In Bracket Method 65

Figure 10.3: An Augmenting Bracket Method .. 66

Figure 10.4: A Testing Bracket Method .. 67

Figure 10.5: A Replacing Bracket Method .. 67

Figure 10.6: A Qualifier with Call-In and Call-Out Bracket Methods 68

Figure 10.7: A Client with Call-Out and a Target with Call-In Brackets 68

Figure 11.1: Parallel Hierarchies for Subtypes and their Co-Types 89

Figure 13.1: Structure of the TCL Collection Types 110

Figure AI.1: An Instance Record for a Structured Type................................ 183

Figure AI.2 Sharing an Object .. 184

 1

 Chapter 1

Introduction

Timor
2
 has the following four primary aims:

• support for applications designed for the ModelOS system [6],

• support for the development of a genuine components industry,

• research into object-oriented programming, and

• support for modelling and implementing database applications.

After briefly introducing these aims, an initial overview of how they have af-

fected the design of Timor is provided.

1 The Aims of Timor

1.1 Support for ModelOS Applications

The first motivation for developing Timor was to support the development of

application programs, initially for SPEEDOS [4] but later for the ModelOS sys-

tem [6]. The reason for this is that ModelOS provides a fundamentally different

computer operating system architecture from that of conventional system archi-

tectures. Here are a few examples.

First, it is a persistent virtual memory system, which means that the con-

ventional distinction between a temporary computational virtual memory and a

persistent file system disappears
3
. In ModelOS all applications execute directly

in a persistent virtual memory. This has the great advantage that no separate file

system is needed. Consequently the fundamental difference in conventional sys-

2
 Timor is an acronym for "Types, Implementations and MORe".

3
 A forerunner of this idea (known as "direct addressability") was pursued by the design-

ers of the famous MULTICS system developed at MIT in the 1960s [38, 37] but this

was unfortunately not achievable in a satisfactory way at that time because of the inade-

quacies of the available hardware. For more details, see chapter 12 of [6].

Chapter 1 INTRODUCTION 2

tems between data structures for

(a) temporary data items in programs executing in conventional virtual

memory and

(b) for persistent files held in a separate file system

does not exist in ModelOS
4
. This has many advantages, the most important of

which from the Timor viewpoint is that Timor does not need to provide a bridge

between two ways of programming data structures. The data structures provided

by a Timor application (in a ModelOS environment) are automatically persis-

tent.

This means in practice that those kinds of data which typically are directly

supported in programming languages (e.g. individual variables such as integers

and boolean values as well as arrays and linked lists, etc.) are held in ModelOS

in the persistent virtual memory. This results in a much simpler Timor design.

The content of a ModelOS persistent virtual memory is not structured like

conventional systems. The latter distinguish between application programs and

files, whereas ModelOS supports a single major structure in the form of infor-

mation hiding modules with multi-entrypoints [5], which are known in Timor

and ModelOS as semantic routines. These can in practice be used both as persis-

tent files (together with their semantic routines) (see Figure 1.1) and as applica-

tion modules (see Figure 1.2). For a more detailed discussion of information hid-

ing see chapter 13 of [6].

4
 Persistent programming was initially the focus of work at the University of Glasgow

(under M. P. Atkinson) and the University of St. Andrews (under R. Morrison) in the

1980s based on an idea called orthogonal persistence [35]. Whereas their aim was to

provide mechanisms which could be implemented using conventional hardware for their

languages PS-Algol [39] and Napier [40], Timor simply presupposes that appropriate

hardware exists (via the ModelOS environment as described in chapter 12 and in the

appendix to volume 1of [6]).

Figure 1.1: A Bank Accounts Module

Deposit

Open

Account

Close

Account

Total

Balance

Account

Balance?

Authorise

Overdraft

Withrawal

Add

Interest

A Set of Bank

Accounts

A Set of

Bank Accounts

Chapter 1 INTRODUCTION 3

A further advantage of this organisation is that it eliminates the need for a

special way of starting applications, such as Java's public static void main

(String[] args). In Timor any semantic routine of any module can in princi-

ple be invoked from any other module (subject to a ModelOS check that the

caller has appropriate access rights). In order to invoke a semantic routine a

ModelOS/Timor thread must present a capability (which is a ModelOS-

protected reference) for the module. Such a capability can be created in Timor in

a manner similar to the way it creates internal values and object references with-

in a module (see chapter 4). Capabilities contain access rights, which can also be

changed (i.e. reduced) in Timor. Normal parameters can be directly passed from

one module to another as part of an inter-module call.

For a user or application programmer, the code of a module is inseparable

from the data structures which it uses, and this has advantages for the security of

a system. A hacker cannot simply write a program to access a data file, as he can

in conventional systems. The ModelOS kernel ensures that the data can only be

accessed via the information hiding routines as defined in the various implemen-

tations of its type definition.

Supporting modules with semantic routines has a further security ad-

vantage. The interface routines of a module can be expressed at a much higher

level than in conventional systems, e.g. for a bank account module routines such

as deposit, withdraw, add interest, transfer, authorize overdraft, etc. can be de-

fined as an information hiding module. The ModelOS kernel ensures that these

routines can be individually protected and that threads can only invoke those

routines of a module for which it has permission. This provides a much more

appropriate implementation of access rights than in conventional systems, for

example by providing bankers with only the access rights to bank accounts

which their work and positions entitle them, as the following figure shows.

Chess Board

Chess Program

etc.

Fox and Hounds

Program

Draughts

Program

Figure 1.2: A Compendium of Games

Chapter 1 INTRODUCTION 4

It may come as a surprise to some readers that Timor does not provide a

particular model for parallel processing, multithreading, etc. The reason for this

is quite simple. ModelOS provides several basic mechanisms based on sema-

phores (see chapter 15 section 4 and also chapters 20 to 22 of [6]) which allow

threads to synchronise their activities. At a higher level the basic operating sys-

tem provides mechanisms which allow processes and their threads
5
 to be created

and managed, see chapter 31 of [6]. This is all achieved via inter-module calls,

which in Timor simply appear as normal calls to other modules, as is described

in chapter 4 below.

As a result of the above approach Timor supports any model for organising

parallel processing, provided that this is based on "in-process" principles
6
 of

process/thread cooperation.

It is perhaps equally surprising for some that no Timor mechanisms are

provided to support the Internet. This is made superfluous by the fact that inter-

module calls in ModelOS (and therefore Timor) can function in appropriate cas-

es in a manner similar to conventional remote procedure calls. The destination

of a remote inter-module call is located by ModelOS automatically, using in-

5
 The ModelOS/Timor concept of processes and threads differs substantially from that

found in most operating systems and programming languages. It is based on a rigorous

"in-process" model (see chapter 8 sections 7ff and chapter 15 of [6]).
6
 If you do not know what the 'in process' model is, see chapters 8 and 15 of [6].

Figure 1.3 Access Rights expressed as Semantic Operations

√ √ x x

√ √ x x

√ √ x x

√ √ x x

√ √ √ x

x x √ x

x √ x x

√ √ x √

Open Account

Close Account

Deposit

Withdraw

Transfer

Add Interest

Authorise Overdraft

Customer Number

A tick indicates that the subject at the head of the column

may carry out the operation in the corresponding row.

Chapter 1 INTRODUCTION 5

formation (managed by ModelOS) in the capability used to make the call. Timor

is totally unaware of the fact that calling some modules involves a remote call

(see chapters 27 to chapter 29 of [6]). For security reasons ModelOS users nor-

mally only use this remote inter-module call facility when using the Internet;

however in exceptional situations a mechanism (implemented via ModelOS

modules) is provided to allow users to use conventional email, websites, etc.

(see chapters 34 and 35 of [6]).

ModelOS is described in detail in the two volume book "ModelOS – Mak-

ing Computers Secure" [6].

1.2 Support for the Development of a Genuine Components Industry

The second aim was to design a language which can easily support the idea of

components (in the sense of components and component industries, as found for

example in the car industry). In contrast with the currently established view of

software components, Timor aims to realise McIlroy's vision [7] that software

components need not be large, but can be quite small (e.g. a Person object or a

Date object); such components can then be built up into larger components. In

our view this philosophy is best realised in an object oriented style, with the help

of a strict interpretation of the information hiding principle [5]. An important

aspect of the module concept in Timor is that type definitions for modules can

be used both as major modules at the operating system level, as described in sec-

tion 1 above, and as internal components of such a module, as we shall see later.

1.3 Research into Object-Oriented Programming

The third aim was to carry out research into the structures of object-oriented

programming languages in order to address certain problems which arise in

practice (e.g. with respect to the relationship between subtyping and subclass-

ing), and to examine why binary methods can be troublesome, in the hope of

designing a language which does not have such problems.

1.4 Support for Modelling and Implementing Database Applications

The final aim was to provide strong support for modelling and implementing

database applications. This is not usually seen as a central aim for object-

oriented programming but it becomes essential in the ModelOS/Timor context,

where there is no extra file system in which databases (specially for business

applications) can be modelled and developed. In Timor a module can be viewed

as a file which is protected by its semantic routines, but it can also be viewed as

a collection of programs or library routines.

Chapter 1 INTRODUCTION 6

2 An Overview of Timor

Pursuing the above aims has led to the design of a somewhat unconventional

object oriented programming language, which

• replaces the class construct by a type definition that can potentially have a

number of different implementations [8, 9], each with a single constructor

which can have implementation-oriented parameters that can differ in dif-

ferent implementations of the same type;

• supports inheritance in the case of subtype hierarchies which derive from a

common abstract ancestor, where the subtypes primarily vary the behav-

iour of their supertypes rather than add new methods (although new meth-

ods can also be added), e.g. as in the case of a collection hierarchy [8];

• adds the concept of views, which are incomplete types (with implementa-

tions), that can be usefully incorporated into different type definitions [8];

• supports diamond inheritance [10], and multiple and repeated inheritance

from separate types, using a technique known as parts inheritance [11];

• replaces subclassing by a flexible new implementation technique based on

re-use variables [12, 9];

• introduces a new kind of component, known as a qualifying type [13, 14],

which contains bracket methods that allow instance methods of other ob-

jects to be "qualified" in a modular way, e.g. to protect or synchronise

them, thus supporting the separation of concerns;

• provides uniform support for distribution and persistence in the form of

persistent objects [15] and persistent processes [16];

• introduces an unusual way of handling makers (the Timor name for appli-

cation-oriented constructors), binary methods, and class (static) variables

and methods, in a new kind of type, known as a co-type [17], which can be

automatically adjusted covariantly to reflect a subtype hierarchy [18].

• supports genericity in forms which reflect the unusual features of Timor,

adding function parameters which allow programmers considerable flexi-

bility, for example by allowing a programmer to redefine what is meant by

such issues as equality.

These and other aspects of Timor will be described in the following chapters.

3 Designing and Implementing Systems

Timor can be used both for 'programming in the large' and for 'programming in

the small', to use the terminology coined by Frank DeRemer and Hans Kron

[19]. However, in contrast with their view that a separate module interconnec-

tion language is needed for programming in the large, the strict use of infor-

Chapter 1 INTRODUCTION 7

mation hiding and of the separation of types and their implementations in Timor

allows system designers and/or programmers both to obtain an overview of how

modules can interact with each other and to concentrate on the implementa-

tion(s) of an individual module.

The design of a system can begin by specifying the purposes of individual

modules and their functionality in type definitions of major information hiding

modules which comprise a system. The designer(s) need not be concerned with

individual implementation decisions and can in this way carry out walk-throughs

of system activities before (or in parallel with) the programming of individual

modules. On the other hand individual modules can be implemented and tested

without reference to their interactions with other modules except via their pro-

cedural interfaces, thanks to their strict adherence to the information hiding

principle. These are some of the advantages of a strict adherence to the infor-

mation hiding principle and of a strict separation of type definitions from their

implementations.

For the same reasons Timor can be considered a component-oriented lan-

guage, since the components of systems and the components of the individual

programs in a system can be separately programmed and implemented in differ-

ent ways. In this way Timor can be used as a basis for developing a software

industry for software components, just as in other industries (e.g. the car indus-

try) components can be individually mass-produced and sold, as Doug McIlroy

already envisaged in the early days of computing [7].

In the following chapters the above concepts are explained in detail. But we

begin with some of the more mundane concepts in Timor.

WARNING: The published papers which describe various aspects of Timor

were prepared before the definition of the language in this book was completed.

Readers are therefore warned that some details in these papers do not reflect the

latest definition of the language.

 8

 Chapter 2

Control Structures

Many of the statement constructs in Timor are similar to Java or C++ state-

ments, and will be immediately obvious to the reader in the examples, but there

are some exceptions, as now described:

1 Iteration Statements

The following forms of repetition are supported:

while Boolean expression {...}

repeat {...} [until Boolean expression]

The until clause is optional. If it is omitted, the statements following the

keyword repeat are executed "for ever". (In this form it can be used to exe-

cute some ModelOS processes).

for dummy-variable in collection expression {...}

[else {...}]

The optional else clause is executed if collection expression is an empty

set. The for statement is explained in more detail in Chapter 13 sections 4.7

and 4.8.

2 Conditional Statements

The if conditional statement supports elsif and else as follows:

if Boolean condition {...}

[elsif Boolean condition {...}]

[elsif Boolean condition {...}]

etc.

[else {...}]

A case statement is also supported, e.g.

case (x) of { // where x is a control variable

 (value1) {statements} // and value1 etc. are values

Chapter 2 CONTROL STRUCTURES 9

 (value2) {statements} // of the type of the variable

 ...

[else {...}]

}

The statements following the else clause are optionally executed if none of the

listed values matches the value of the control variable.

There is also a cast statement, which is explained in chapter 7 section 9

and a cocast statement which is explained in chapter 16 section 2.3.

3 With Blocks

Timor supports a "with" block which enables the internal identifiers of a varia-

ble to be accessed without repeating the variable name. It has the following

form.

with (variable) [as identifier] {...}

This was inspired by the Pascal "with" statement, but has been adapted to

the needs of Timor. The aim is to make code less tedious to write and easier to

understand. It is particularly useful in code which overrides methods of re-use

variables, but is not confined to this.

Unlike Pascal only a single variable can appear following the with key-

word. The optional as clause allows the nominated variable to be "renamed" by

an identifier. The reason for these changes is to make programs more intelligi-

ble.

A with block is interpreted entirely statically by the compiler when com-

piling an implementation; it plays no part whatsoever in the dynamic execution

of a program. Its sole purpose is to resolve shortened identifiers which appear in

the block.

3.1 What can be Nominated in a Timor Block

In Timor any variable identifier, including re-use variable identifiers, can be

nominated as a with variable.

Here is an example, which we used in the paper "Inheriting Multiple and

Repeated Parts in Timor" [11]:

state:

 ^ArrayQueue1 aq; // a re-use variable

instance:

 op void insertAtFront(ELEMENT e) throws FullEx {

 with (aq) {

 if (size < maxSize)

Chapter 2 CONTROL STRUCTURES 10

 {front--; if (front < 0) front = maxSize - 1;

 theArray[front] = e; size++;}

 else throw new FullEx();

 }

 }

This is equivalent to

state:

 ^ArrayQueue1 aq;

instance: // the methods not coded in ArrayQueue1

 op void insertAtFront(ELEMENT e) throws FullEx {

 if (aq.size < aq.maxSize)

 {aq.front--; if (aq.front < 0) aq.front = aq.maxSize - 1;

 aq.theArray[aq.front] = e; aq.size++;}

 else throw new FullEx();

}

with blocks can be nested within each other, which might be useful in special

cases.

3.2 Interpreting Identifiers in a With Block

In the first instance each identifier which is used in a with block is treated as if

it were a complete identifier (i.e. as if it were not in a with block). This means

that it is possible explicitly to use the with variable identifier itself within a

with block which nominates it. (This can be important, for example, if a method

has to be called recursively, and within it there is a with block where the with

variable has a method with the same identifier.)

If an identifier remains unresolved, the compiler prefixes it with the identi-

fier of the with variable of the with block in which it directly appears, i.e. the

innermost with block at that point in the text (separated by a dot), and attempts

again to resolve it. If it is still unresolved, the compiler replaces the prefix of the

innermost block with the identifier of the with variable of the surrounding with

block and tries to resolve it. This process is repeated until either the identifier is

resolved (or it cannot be resolved by the outermost with variable, in which case

the compiler raises a compile time error).

A with block can itself contain a variable name using the dot notation, e.g.

with (a.b) {...}

In this case identifiers in the code are where appropriate prefixed by a.b., but

not by a. or by b. alone!

Chapter 2 CONTROL STRUCTURES 11

3.3 The Scope of a With Block

The construct has been deliberately called it a block, rather than a statement, be-

cause it can have a wider scope than a statement. For example, if the with vari-

able is a state variable, the with block can (but need not) be placed directly after

the state section in which it is declared, and can, for example, continue until the

end of the implementation. However, its terminating bracket cannot be placed

where it would cause the compiler to confuse this with some other terminating

curly bracket. A with block can of course also be placed anywhere where a

normal statement is possible, but not nested within a conditional statement.

This allows several methods (even all methods) of an implementation to be

enclosed in a single with block, as is illustrated in the implementation of

OrderedSet::ArrayImpl (see chapter 13 section 2.3.4).

4 Exception Handling

All exceptions are unchecked, in the sense of Java unchecked exceptions.

A method in a type definition must list in its heading all the exceptions

which it explicitly throws, using the keyword throws. It can, but need not, de-

fine other exceptions (e.g. those of the methods which it invokes
7
 or arithmetic

and other typical run-time exceptions).

New exceptions can be added in a subtype (or a qualifying type).

Any exception which is not specifically defined as a type is a subtype of the

general type 'Exception', which has no methods.

An exception can be defined in a throws clause. This is indicated in the

heading of the method. The actual handling takes place in the catch section of a

Java-like try-catch block. This takes the form

try {...} // the statements to be tested

catch (ExceptionType exceptionId) {exception handling code}

... further catch blocks to handle different exceptions

[finally {optional code executed regardless of result, e.g.

to clean up before exiting}]

The catch block can specify multiple exceptions types which use the same ex-

ception handling code. These are separated by a bar, e.g.

catch (ExceptType1 | ExceptType2 | ExceptType3 excId)

{exception handling code}

7
 The information hiding principle implies that at the level of a type definition the design-

er does not know what components will be used and therefore cannot be sure which ex-

ceptions can be thrown!

Chapter 2 CONTROL STRUCTURES 12

If the method does not handle an exception, this is passed to its calling

method. If the module's semantic routine (i.e. the module's outermost routine

which was invoked to enter the module) does not handle an exception, this is

passed to the ModelOS exception handler.

5 Further Syntax

Further kinds of statements are described in connection with the structures for

which they are used, e.g. case statements in connection with enumeration types.

Attention is also drawn to the existence of additional syntax for program-

ming with collections, see chapter 13 section 4.

A list of operators is defined in Appendix II.

6 Pragmas

Pragmas are not part of the Timor language, but are compiler directives (or ad-

vice) aimed at improving the efficiency of compiled programs; there is no de-

fined list of pragmas for the language but pragmas can be defined for particular

Timor compilers. Each compiler can support its own list of pragmas. The only

Timor extension is that a pragma is introduced into the text of programs on a

separate line which begins with the text #pragma.

 13

 Chapter 3

The Basic Structure

of Timor Programs

The OO idea, as it appears in conventional programming languages, suffers

from the restriction that it is applied only to small objects within a program. The

result is that conventional OO (and other) languages faithfully reflect the con-

ventional but harmful
8
 idea of separating

• programs, which typically have a single entry point (parameterless in the

sense that routines have parameters) and only temporary data, from

• persistent data (in the form of files organised by a file system).

According to that model access to persistent data files is handled by special in-

terfaces to the file system. This approach reflects the dependence of program-

ming languages on conventional operating system structures.

ModelOS and Timor rectify this deficiency by taking a uniform approach

to the definition and implementation of both small objects within a program and

large objects which form major modules known to the operating system. On the

other hand the Timor approach does not prevent the language from being used

with conventional operating systems, since access to files in a conventional file

system can be hidden behind a Timor module interface, and a single entry point

information hiding module can be used to start a program.

1 Identifiers

The following rules are defined for identifiers.

• A type or view identifier starts with a capital letter and may be followed by

8
 This approach is harmful in the sense that it opens up a simple way for any hacker to

write programs which can relatively easily access files that are inadequately protected

by file systems. It is also harmful in that it discourages the software engineering idea of

developing major modules as information hiding modules.

Chapter 3 THE BASIC STRUCTURE OF TIMOR PROGRAMS 14

a combination of small and capital letters, including at least one small let-

ter. Other symbols are permitted as normal, except as follows.

• The ampersand character (&) is permitted only in co-type identifiers.

• The double colon (::) is permitted only in implementation identifiers.

• A single capital letter is a type identifier.

• A variable or method identifier begins with a small letter and may be fol-

lowed by any combination of small and capital letters. Other symbols (ex-

cept ampersand and double colon) are permitted as normal.

• An identifier for a co-type variable consists of the corresponding type name

followed by the & symbol and a co-type suffix.

• A generic identifier (regardless which kind) must begin with at least two

capital letters. Small letters are not permitted in a generic identifier but ad-

ditional further symbols are permitted as normal.

The scope of type, co-type and implementation identifiers (including enumera-

tion types) is the module in which they are used.

2 Enumeration Types

Timor supports enumeration types, in three forms:

a) simple enumerations, using the keyword enum;

b) sequences, using the keyword seq;

c) circular types, using the keyword circ.

2.1 Simple Enumeration Types

An enumeration is declared as

enum Colour {red, blue, green, yellow, black, white}

Unlike C++ enumerations, the values are not equivalent to integers and cannot

be coerced to integers (or any other type). Nor can a C-like "sizeof" operator be

applied to them. The only applicable operators are assignment, equality (==) and

inequality (!=).

An enumeration value can be used in a case statement, e.g.

case (thisColour) of {

 (red) {statement}

 (blue) {statement}

 [else statement]

}

Enumerations can have sub-ranges, e.g. red..yellow. These cannot be re-

versed, and no order is implied. However they can be used as array indices, e.g.

Chapter 3 THE BASIC STRUCTURE OF TIMOR PROGRAMS 15

Drawer[] cottons = Drawer[green..white]::Impl();

Note on arrays: Timor's array indices also use sub-ranges of integers and other

types can have literal sub-ranges, e.g.

Rainfall[] rains = Rainfall[2000..2011]::Impl();

2.2 Sequences

A sequence is declared as follows:

seq Numbers {one, two, three}

It differs from an enumeration in that its values have an ascending order, and

can be compared with each other using all the normal comparators (<, <=, ==,

!=, >, >=), e.g.

one <= three // returns true

three <= one // returns false

There are the following additional operators:

succ(one) // returns "two"

succ(three) // throws exception OutOfRange

pred(one) // throws exception OutOfRange

pred(three) // returns "two"

Numbers.range() // returns the integer value 3

Numbers.min() // returns one

Numbers.max() // returns three

Numbers.add(one, 2) // returns "three";

Numbers.add(one, 3) // throws OutOfRange

Numbers.diff(one, three) // returns -2;

Numbers.diff(three, one) // returns 2;

Sequences can have sub-ranges, e.g. two..three and these can be reversed, e.g.

three...two. (Note: two dots for forward sub-range, three dots for reverse sub-

range.) Both forward and reverse sub-ranges of sequences can be used to index

arrays. They can be used in case statements.

2.3 Circular

A circular type is declared as

circ Days {monday, tuesday, wednesday, thursday, friday,

 saturday, sunday}

It differs from a sequence in that its values have a circular ordering. They can be

compared with each other using all the normal comparators (<, <=, ==, !=, >,

>=), whereby the result is similar to that which would arise for a sequence, e.g.

Chapter 3 THE BASIC STRUCTURE OF TIMOR PROGRAMS 16

monday <= sunday // returns true

monday == succ(sunday) // returns true

monday > sunday // returns false

There are the following additional operators, which illustrate the circular nature

of the types:

succ(monday) // returns "tuesday"

succ(sunday) // returns "monday"

pred(monday) // returns "sunday"

pred(sunday) // returns "saturday"

Days.range() // returns the integer value 7

Days.add(tuesday, 9) // returns "thursday"

Days.add(monday, -8) // returns "sunday"

Days.diff(sunday, monday) // returns 1

Days.diff(monday, sunday) // returns -1

Days.range() // returns 7

There are no min and max methods.

Circular types can have sub-ranges, e.g. two..three and these can be reversed,

e.g. three..two. These can be used for example to index arrays. (Note: two

dots always apply.)

2.4 Lists of Enumeration Values

A list of enumeration values can be created (as for other lists), by using the curly

bracket notation {}. The type of the list is the enumeration type (followed by a

semi-colon) and the values are separated by commas, e.g.

{Colour: red, green, red, blue, red}

This might for example appear in the following statement:

Set<Colour> colourset = {red, green, red, blue, red};

This is converted in the usual way to a set consisting of the values red, green,

and blue.

3 Type Definitions

The definition of a Timor type, whether it is intended as a small object within a

program or as an independent module organised by the operating system, has the

following basic form:

type typeName {

instance:

instance method definitions /* These define the interface

 methods (semantic routines) of the type */

Chapter 3 THE BASIC STRUCTURE OF TIMOR PROGRAMS 17

protected:

protected method definitions /* protected methods appear in

 type definitions but can only be called by implementations

 of derived types and co-types (see chapter 11) */

callback:

call back method definitions /* call back methods are

 instance methods which can only be called

 from a module which itself was invoked directly from

 the current module. */

}

The words and symbols marked in bold are fixed parts of the Timor language.

The rest is supplied by the programmer.

Type definitions can be used to define both small and large objects (e.g.

separate modules). The most significant point is that they are type definitions. In

accordance with the information hiding principle, and in contrast with the con-

ventional OO languages, it provides a natural way of allowing types to be de-

fined and specified separately from their implementations.

This is the simplest form which a type definition can take. There are several

possible variations on the basic form, reflecting further structural properties that

a type may have. For example, as in standard OO, it is possible to define abstract

types, in which case the keyword abstract precedes the keyword type. The

following keywords can precede the keyword type.

a) abstract: indicates that an abstract type is being defined;

b) singleton: in a module only one instance of the type can be created;

c) library: the type can be implemented in ModelOS as a library module –

see section 4.3 below and chapter 18 section 6 of [6];

d) comod: the type is implemented in ModelOS as a module which can accept

and return reference parameters
9
;

e) callback: the type must be implemented in ModelOS as a call-back mod-

ule (see [6] chapter 18 section 9, chapter 20 section 8.5 and chapter 28 sec-

tion 7).

4 Implementations

An implementation of a type has the following basic structure:

9
 Normally the type definitions of independent modules (in the ModelOS sense) cannot

include interface methods which pass and/or return parameters by reference, as is ex-

plained in detail in chapter 18 section 7 of [6].

Chapter 3 THE BASIC STRUCTURE OF TIMOR PROGRAMS 18

impl implementationName {

state:

 /* internal data declarations which define the state

 variables of the module */

retained:

 /* data which allows a thread to retain information

 relating to a sequence of calls between an open call

 and a close call (see section 6 below). This data is not

 accessible to other threads. */

constr:

 // an implementation-specific constructor

instance:

 // instance method implementations

protected:

 /* protected methods appear in type definitions but can

 only be called by implementations of derived types (see

 chapters 6 to 8) and of co-types (see chapter 11) */

callback:

 // callback method implementations

internal:

 /* internal methods (which do not appear in type

 definitions and cannot be invoked from outside the

 module), i.e. subroutines */

}

The various sections (except the constr section) can appear more than once in

an implementation and their order is irrelevant.

4.1 Retained Data

Retained data is an idea taken over from the ModelOS operating system (see

chapter 18 section 1.4 of [6])
10

. The basic idea is that when a thread opens a

module (e.g. a ModelOS module) the module can store information about that

open call and the subsequent instance method calls which the thread makes to

the module until it calls the close routine (see section 6 below).

4.2 Multiple Implementations

The same type can have several different implementations, regardless whether it

implements small objects within a module (e.g. an employee record) or major

modules (e.g. a file of employee records). Since the interface is defined entirely

10

 which was in turn taken over from MONADS.

Chapter 3 THE BASIC STRUCTURE OF TIMOR PROGRAMS 19

in procedural terms, users of objects of the type do not have to be concerned

about the data structures which appear in the state and retained sections. In

fact these may differ in different implementations of the same type. All the im-

plementations of a type must produce the "same" results.

An implementation name is the name of the type being implemented fol-

lowed by a double colon (::) then an implementation identifier. Each concrete

type must have at least one implementation, with the suffix "::Impl". This is

the name used for default implementations, which are automatically selected

when another implementation name is not explicitly provided.

An explicitly programmed constructor can be omitted if the variables in the

state section are all explicitly initialised or have default values
11

. In this case the

compiler creates a parameterless constructor, which can be invoked in the usual

way, e.g. typename::Impl() or in the case of an explicitly defined implemen-

tation using the implementation name, e.g. Stack::LinkedStack().

Since different implementations of a type may require constructors with

different parameters, constructors do not appear in type definitions, but only in

implementations.

A type can be implemented in several ways [9]:

1) It can be complete self-contained, i.e. it is freshly coded independently of

all other implementations. This remains true whether the type is a base type

or is derived by inheritance from some other type.

2) An implementation can re-use code from some other implementation which

has matching methods (regardless whether or not the types stand in an in-

heritance relationship).

3) It is also possible to create implementations which are typeless and to use

these in implementations of types. Such free-standing typeless implementa-

tions have no significance for the type system. A typeless implementation is

identified by a double colon (::) then an implementation identifier (with-

out a preceding type name), e.g. ::usefulCode.

These possibilities will be discussed in more detail in chapter 8.

5 Instance Methods

An instance method is a method which operates on a single instance of a type. In

contrast with more conventional OO languages, a Timor type only has instance

methods (and possibly open and close methods, see next section). It will be ex-

11

 Default values for state variables in Timor are similar to those in Java, i.e. for numbers

0, for booleans false and for references and capabilities null. This should not be

confused with default parameter values, see chapter 3 section 8.

Chapter 3 THE BASIC STRUCTURE OF TIMOR PROGRAMS 20

plained in chapter 11 how other kinds of methods which appear in conventional

OO languages (e.g. static methods, binary methods and application oriented

constructors) are supported.

The instance methods which appear in a type definition specify the inter-

face routines of the type
12

. There are two kinds of instance methods.

• Enquiries, which are indicated by the keyword enq, normally
13

 return a

value to the caller but are not allowed to modify the state data associated

with the object on which they operate
14

.

• Operations, which are indicated by the keyword op, may but need not re-

turn a value to the caller. They modify the state data associated with the

object on which they operate.

This distinction is important for ModelOS, since it allows compilers and pro-

grammers to distinguish between reader methods (enq) and writer methods (op).

This greatly simplifies reader-writer and more advanced forms of synchronisa-

tion, and it also allows users to specify their protection requirements more flexi-

bly (see chapter 15 section 2).

6 Open and Close Methods

In addition to the general methods (operations and enquiries) Timor supports

two special methods (open and close). As in conventional operating systems and

file systems an open method signifies that a thread intends to use a module via a

number of method invocations and close signifies that the sequence of method

calls has now come to completion. Not all types have open and close methods,

and in fact such routines can be added to type descriptions via a separate add-on

mechanism (see Chapter 10 section 5). They are regarded neither as operations

nor as enquiries. They are identified by the reserved names open and close.

The first (and possibly only) parameter of open allows a thread to specify

whether it intends to access the object being opened in read mode or write mode.

 enum OpenMode {closed, read, write}

 open void open(OpenMode mode) throws OpenError;

 close void close() throws CloseError;

12

 Individual implementations of a type can also have internal instance methods, which

can vary from implementation to implementation.
13

 There are cases where an enquiry returns a void value (see e.g. the method sublist

chapter 14 section 4.2).
14

 Sometimes programmers include auxiliary features in enquiries (e.g. variables which

count the number of calls). In Timor such features should be provided in qualifiers (see

chapter 10), thus ensuring that methods which logically are enquiries do not contain

write operations. This is important to allow the methods to be properly categorised for

synchronisation and security reasons, as will become evident later.

Chapter 3 THE BASIC STRUCTURE OF TIMOR PROGRAMS 21

Both methods can have further application specific parameters. As the above

example shows, these methods are indicated by the keywords open and close,

which are reserved for this purpose. The names of these methods follow the

normal rules, but in contrast with other methods they may (but need not) be

called open and close respectively.

Apart from the synchronisation aspect, these methods are useful in

ModelOS, e.g. for determining whether a removable disc can safely be dis-

mounted, and they play a role in iterating through a collection, as is explained in

Chapter 13 section 4.8.

7 Callback Methods

These are instance methods (which are defined in a separate callback section

of type and implementation definitions. When a method of a call back module A

invokes a method of a further module B, this method can invoke a call back

method of A by using the pseudo-variable callback, e.g.

callback.aMethod(params);

8 Parameters

8.1 Parameter Declarations

As in other languages, methods have parameters. In most languages individual

parameters in method declarations are separated by commas. By contrast, meth-

od parameters in Timor are treated syntactically as a set of data declarations

similar to those in other sections, e.g. in state sections, and are therefore separat-

ed via semicolons.

enq Boolean equal (Int i1; Int i2);

However, as in a Timor state section, a number of parameters of the same type

can be separated by commas following the type name, e.g.

enq Boolean equal (Int i1, i2);

In his case the individual parameters must have exactly the same type and exact-

ly the same mode
15

.

Method invocations separate parameters using commas, as in other lan-

guages.

8.2 Default Parameter Values

It is possible in Timor method declarations to provide parameters with default

parameter values, which can of course be overridden in actual method invoca-

15

 Modes are described in chapter 4.

Chapter 3 THE BASIC STRUCTURE OF TIMOR PROGRAMS 22

tions. In this case each declared parameter which has a default value must be

separated by a semicolon from other parameters, e.g.

enq Boolean equal (Int i1 = 20; Int i2);

// i1 has a default value; i2 has no default value

In this case i1 has a default parameter value 20, which must also be of type Int.

This can be overridden in an actual call, e.g.

Boolean b = equal (n, m); // m and n must be of type Int

To make use of a default parameter value the programmer replaces it with an

asterisk, e.g.

Boolean b = equal (*, m);

9 Protected Methods

These are instance methods which are declared in type definitions, but which

cannot be called by normal clients. They can only be invoked by the implemen-

tations of derived types and of co-types (see chapter 11).

10 Internal Methods

Internal instance methods can appear in an internal section of an implementa-

tion. These are methods which are not visible to and cannot be called by clients

of the module. Such methods do not appear in a type definition, but appear only

in implementations. Each implementation of a type can have different internal

methods.

11 An Example Type Definition

Here is an example of a simple type which defines stack instances that hold in-

tegers
16

:

type Stack {

instance:

 op void push(Int i) throws StackFull;

 /* puts an integer on the stack top

 or signals that the stack is full */

 op Int pop() throws StackEmpty;

 /* removes and returns the integer at the stack top

 or signals that the stack is empty */

 enq Int top() throws StackEmpty;

 /* returns the integer value at the stack top

 without modifying the stack */

16

 This should not to be confused with the ModelOS kernel's thread stack.

Chapter 3 THE BASIC STRUCTURE OF TIMOR PROGRAMS 23

 enq Int length();

 /* returns an integer indicating

 the current stack length */

 enq Boolean contains(Int i);

 /* indicates whether the integer i

 is currently on the stack */

protected:

 enq Int getEntryAtPos(Int position)

 throws Invalid Param;

 // position 0 signifies first position

}

Notes:

1) Type names always begin with an upper case letter followed by a non-

uppercase character; this includes the basic types such as Int and Boolean.

2) The method push has an integer parameter which is referred to in imple-

mentations of the method as i. It returns a void result.

3) The method pop has no parameters but returns an integer as its result.

4) The first two methods are defined as operations (op) because they change

the state data to carry out their tasks.

5) The remaining methods are defined as enquiries (enq) because their tasks

do not require them to change the state data of implementations.

6) The users of stack objects are unaware of the data structures used in imple-

mentations.

7) The example illustrates a stack of integers. Timor has a generic facility,

which can be used to define container types (including stacks) that hold el-

ements of any types, defined generically
17

. At this tutorial stage we prefer

not to introduce the additional features needed to support genericity; these

are explained in chapter 12.

8) The protected method can be used by a co-type (to be discussed in chapter

11) to gain efficient access, e.g. for a copy operation.

12 An Example Implementation

Here is a possible implementation of the type Stack.

17

 Not to be confused with containers in ModelOS. In Timor a container type is a type

which stores instances of other types. In addition to stacks (illustrated here) different

container types can be defined, e.g. lists, sets, tables, queues. They are more fully dis-

cussed in chapters 12 to 14.

Chapter 3 THE BASIC STRUCTURE OF TIMOR PROGRAMS 24

impl Stack::ArrayStack {

state:

 Int[] stack = null; // an array of integers

 Int maxlength, length = 0;

constr: /* constructs the array using a Timor array

 constructor */

 Stack::ArrayStack(Int maxlength) throws BoundsEx {

 if (maxlength < 1 || maxlength > 1000000)

 throw new BoundsEx();

 this.maxlength = maxlength;

 stack = Int[]::Impl(maxlength); // an array constructor

 }

instance:

 op void push(Int i) {

 if (length == maxlength) throw new StackFull();

 stack[length] = i;

 length++;

 }

 op Int pop() {

 if (length == 0) throw new StackEmpty();

 length--;

 return stack[length];

 }

 enq Int top() {

 if (length == 0) throw new StackEmpty();

 return stack[length-1];

 }

 enq Int length() {return length;}

 enq Boolean contains(Int i) {

 for (next in {0..(length-1)})

 if (stack[next] == i) return true;

 return false;

 }

protected:

 enq Int getEntryAtPos(Int position) {

 if (position < 0 || position ≥ length)

 throw new InvalidParam();

 return stack[position];

 }

}

Chapter 3 THE BASIC STRUCTURE OF TIMOR PROGRAMS 25

Notes:

1) The state section contains data declarations which appear in each instance

of the type being implemented as an ArrayStack.

2) Constructors are not defined in type definitions because they may have dif-

ferent implementation-dependent parameters. The name of an implementa-

tion constructor is the same as that of the implementation.

3) There is only one constructor per implementation. In chapter 11 it is shown

why this is not a limitation compared with other OO languages.

 26

 Chapter 4

Instances, Values, Objects

and Modules

When an implementation of a type is compiled, the compiler creates a pattern

for an instance record, which contains an internal form of the state declarations

and an internal pointer to the corresponding list of instance methods. When a

constructor is invoked, this creates and initialises an actual instance record.

Some OO languages, such as C++, draw a distinction between values and

pointers to values. Others, including Java, have avoided the explicit use of

pointers, presumably with the well-intentioned aim of eliminating certain poten-

tially harmful programming tricks, such as allowing arithmetic operations to be

used to change pointers. Unfortunately this also removes from the programmer

the ability to determine precisely when underlying pointers should be used,

which is obviously disadvantageous in the ModelOS context. Consequently Ti-

mor explicitly promotes the ability to distinguish between pointers and values.

The C notation for pointers has been partially re-introduced in Timor, but C

and C++ programmers are warned that many of the "features" of pointers in

those languages have not been included, especially the ability to carry out point-

er arithmetic. In Timor, pointers are usually called references, which can be im-

plemented as ModelOS pointers.

Timor also introduces a notation for capabilities, which are pointers to ma-

jor modules known at the operating system level
18

. These correspond to

ModelOS capabilities. This eliminates the need for special constructs to access

persistent files, necessary in other programming languages.

18

 In ModelOS a capability is a protected data structure which contains a unique module

identifier (for modules known to ModelOS, which are equivalent to persistent files in

conventional file systems) and an extensive set of access rights and restrictions. Capa-

bilities can only be accessed via ModelOS privileged kernel instructions.

Chapter 4 INSTANCES, VALUES, OBJECTS AND MODULES 27

The instance record produced by a constructor represents a value for that

type. This can, for example, be assigned to a value variable, or it can be trans-

formed into an object, which can then be assigned to a reference variable, or it

can be transformed into a persistent file, which can be assigned to a capability

variable.

1 The Basic Types

The basic types (e.g. integers, booleans, characters) are similar to those in Java.

These form the basis for building structured types and are normally provided by

the computer architecture. Wherever possible, basic types and structured types

are handled uniformly in Timor. Thus in contrast to most other languages they

have type names which begin with a capital letter, e.g. Int, Boolean. As will be

seen later, they can be statically instantiated in the normal way, but they can also

be dynamically instantiated as (shareable) objects accessible via references (see

sections 2 and 3 below).

Although a high degree of uniformity exists in Timor for the handling of

the basic types and structured types, there are some inevitable small differences,

which arise from the fact that basic types represent the level of "real" implemen-

tation, i.e. they provide the starting point for defining and implementing struc-

tured types. These differences can be summarised as follows:

a) There is only a single (implicit) implementation for a basic type, whereas a

structured type can have more than one implementation.

b) A basic type has no normal instance methods. Its operations all fall formal-

ly into the Timor categories binary or constructor (including constructors

such as the negation of an integer, or binaries which sum of two integers).

c) Basic types always have a valid value by default, whereas structured types

have a special value null.

There is a special type Array, which is also similar to a Java array. This is not

primarily intended for direct use in programs (though it can be so used). Its pri-

mary purpose is to provide an implementation of the Timor Collection Library

(see chapter 13 section 2.2), which can then be used to provide an equivalent of

arrays (see chapter 13 section 4.3, 'Selection by Position').

2 Value Variables

A value variable is declared as a type name followed by an identifier for the var-

iable. Its value can be initialised by assigning a value of the same type to it,

which in the case of the built-in types is often a literal value, e.g.

Int i = 3;

String s = "This is a string";

Chapter 4 INSTANCES, VALUES, OBJECTS AND MODULES 28

In the case of user-defined types a constructor defined in an implementation of

the type can be called, e.g.

Person p = Person::Impl();

or an existing value of the type might be assigned to it, e.g.

Person p2 = p; // This is a copy operation

Different implementations of the same type can co-exist in the same program.

3 References and Objects

A fundamental difference between a value and an object is that values are not

shareable, i.e. a value can only be addressed (in accordance with the information

hiding principle) by the methods of an implementation of the type in which the

value variable is defined when operating on the appropriate instance. In contrast,

objects are shareable if they can be reached via an appropriate reference varia-

ble. Reference variables are stored as pointers
19

 in the state section of an in-

stance record.

A reference variable is declared using a type name with a single asterisk as

a suffix, followed by an identifier for the reference, e.g.

Person* spouse;

References point to objects of the appropriate type. In order to create an object

(as distinct from a value within an object) the operator new is used, e.g.

Person* spouse = new Person::Impl();

The new operator is followed by a value of the appropriate type. The example

shows how this value might be created by a constructor, but an existing value of

the appropriate type can also be used to create an object, e.g.

Date* dob = new today;

A reference assignment, i.e. the assignment of a reference variable to an-

other, causes both references to point to the same object
20

, e.g.

Person* myBrother = new Person::Impl();

Person* hisCousin = myBrother;

The value of an object can be retrieved as a value by using the dereferencing

operator, which creates a copy of the content of the object:

Person personDetails = *myBrother;

19

 References are in fact indirect. A reference selects an entry in a Timor (run-time) object

table, which in turn points to the object in question. The indirection is not visible in Ti-

mor. In this way objects can be shared and can be relocated and deleted without causing

problems. For more details see Appendix I.
20

 in the (hidden) object table.

Chapter 4 INSTANCES, VALUES, OBJECTS AND MODULES 29

The built-in types can also be created as objects, e.g.

Int* intObject = new Int::Impl(5);

or more simply

Int* intObject = new 5;

Both these declarations create an integer object (with a value 5), which can be

shared by other objects.

There is an explicit delete statement for deleting objects, e.g.

delete (hisCousin);

This causes the referenced object to be deleted
21

. Subsequent attempts to access

the object by any reference cause an exception.

If an object becomes unreachable, it can be deleted by a garbage collector.

4 Capabilities and File Modules

When Timor is used in the ModelOS environment it does not require a special

interface to give programs access to a conventional file system. Instead it must

take into account the difference between types/implementations which serve as

independent ModelOS modules (see chapter 1 section 1) and objects which are

internal structures within a ModelOS module. This is achieved in Timor via fea-

tures to support ModelOS capabilities, which are protected ModelOS data struc-

tures that provide access to (and protection for) ModelOS modules.

Just as reference variables point to the objects within a module, so capabili-

ties point to file modules
22

. The notation used to signify a capability variable for

a file module is a type name followed by two asterisks, e.g.

TextFile** myFile;

Just as new is used to create internal objects, so the keyword create is used to

create a new file module, e.g.

TextFile** myFile = create TextFile::Impl();

Similarly the other operations involving objects described above apply analo-

gously to capabilities, though it is unlikely that these will be used frequently.

For example a new module can be created by nominating an existing value or a

literal, e.g.

TextFile myFile = TextFile::Impl();

21

 In contrast with some OO languages, explicit deletion is supported, because Timor inter

alia aims to be a realistic language for database applications.
22

 In contrast with objects, there is no "capability table" within a module. The operating

system manages capabilities, which can be passed to the instance methods of a module

as parameters and can be stored internally in capability variables.

Chapter 4 INSTANCES, VALUES, OBJECTS AND MODULES 30

// This creates an instance record

myFile.insert("This is my file");

// This inserts text into the instance record

TextFile** hisFile = create myFile;

/* This creates a file from the instance record and assigns

 it to a capability */

A capability assignment copies a capability, e.g.

TextFile** myFile = create TextFile::Impl();

// This creates a file and assigns it to a capability

Textfile** anotherCapability = myFile;

// This is a capability copy operation

Copying a capability does not create a new module, but simply a new capability

for the same module. (In ModelOS systems this operation is of course only per-

mitted if the "copy" right is set in the capability to be copied.
23

) Similarly, a file

can be deleted using the delete operator, but only if the rights in the capability

allow this.

Violations of the rights in capabilities result in exceptions which are han-

dles as ModelOS exceptions.

The different possibilities for organising instances as values, references and

capabilities are known as different modes.

5 Library Modules

Library modules are usually considered to be modules which provide commonly

used algorithms and data structures. They are sometimes implemented in

ModelOS as separate modules which can be used independently of other mod-

ules. For example a library of trigonometrical functions can be implemented in

this way. Such modules should not be designated as library types in Timor.

Other library modules, such as synchronisation modules (see chapter 15

section 4) are closely related to the data of application modules and it would be

extremely inefficient to treat these as normal modules which are accessed via

inter-module calls (which in ModelOS are the main mechanism for implement-

ing protection, and are consequently quite slow when compared with calls be-

tween the objects in a single module). Consequently these are designated in type

definitions as library modules and the compiler can treat these almost like

other internal data structures, with a root data segment which is integrated into

the other data structures of a program. How this happens in detail in ModelOS is

explained in [6] chapter 18 section 6. A further reason for this is that unlike calls

23

 For more details about copying capabilities see [6] vol.2 chapter 26 section 3.3.

Chapter 4 INSTANCES, VALUES, OBJECTS AND MODULES 31

to independent ModelOS modules, such library modules can have references as

parameters and return values.

There is a third group of library routines which can both act as separate

modules and can be integrated into other modules. This applies especially in the

case of collection modules. These can conveniently serve as data structures

within an application (e.g. for temporary arrays, queues, etc., as supported in OO

languages) but also as persistent separate file modules (equivalent to file system

files in conventional operating systems. From the Timor language definition

viewpoint there is no significant difference (provided that they follow the rule

that their interface methods do not pass or return references). But because

ModelOS distinguishes the two cases the Timor compiler must provide a param-

eter which indicates whether such a module is to be implemented as a separate

module or as a unit integrated into some other module.

6 Conversion between Modes

Mode coercion (i.e. implicit conversion between modes) is not supported, but

casting between modes is supported using a syntax similar to the Java type cast

syntax, i.e. by placing the converted mode name (in brackets) before the item to

be casted, e.g. Person* p = (reference) x, where x might be a value varia-

ble. In this trivial example it would have been simpler to use the keyword new to

achieve the same effect if it were clear that x is a value, but if it were possible

that x were already a reference, that would cause an error. As we shall see in

chapter 7 section 8 this situation can arise when Timor "handles" are used. To

convert to a value the syntax is (value); to convert to a reference the syntax is

(reference), to convert to a capability the syntax is (capability)
24

.

7 Numerical Representation

Timor uses the same rules as Java for representing and casting numbers.
25

8 Instance Records

Compilers implement values, object references and capabilities using an in-

stance record which contains pointers into a heap. An instance record also con-

tains a pointer to the list of methods of the implementation. This organisation is

described in more detail in Appendix I.

9 Shared Objects and Collections

Section 3 described how objects are reached via references with the beneficial

24

 The ModelOS access rights in converting to a capability are all set to true.
25

 see for example http://faculty.salina.k-state.edu/tmertz/Java/041datatypesandoperators/

07typecoercionandconversion.pdf

Chapter 4 INSTANCES, VALUES, OBJECTS AND MODULES 32

consequence that they become shareable (in contrast with values). This opens up

the possibility that the same objects can appear in several object collections.

This is taken into account in the Timor Collection Library (TCL), which allows

a collection to be copied using the operator =* ('reference copy')
26

. In this case

programmers must of course ensure that access is synchronised where appropri-

ate.

The effect of the reference copy operator is that the operation copies only

the references which refer to the elements in the collection. References within

the elements themselves are not affected by the operation. One advantage of this

is that the copy operation is faster than it would otherwise be. When such an ob-

ject is deleted via a shared collection, only the reference is deleted. Similarly

when the shared collection is deleted, this does not affect the original collection.

However, if the original collection or an element (object) in it is deleted this ac-

tion is taken as if the collection is not shared, with the consequence that errors

can occur when accessing the objects via a shared version. Since the aim of this

mechanism is to speed up temporary activities (such as taking an intersection of

two object collections) this restriction is not considered to be problematic

26

 see chapter 13 section 4.5.

 33

 Chapter 5

Abstract Variables

and Records

Timor types strictly follow the information hiding principle by not permitting

"raw" data declarations (i.e. fields) to appear in interface definitions. Only

methods are permitted. This is important to ensure that synchronisation and pro-

tection can be organised correctly.

However, this can be extremely inconvenient for programmers, especially

when "small" types are being defined. Consequently Timor allows some meth-

ods to be defined in a type interface as if they were variables. This simplifies

programming, but in reality the compiler treats each such variable declaration as

a pair of methods, often known as "setters" and "getters". One method is a writer

method which apparently sets (modifies) the value of a (hidden) state variable,

while the second, an enquiry, returns the value of the (hidden) state variable to

the caller. (In implementations of the type there is no compulsion for an imple-

mentation programmer actually to declare such hidden variables in the state sec-

tion; he can implement the methods however he wishes, provided that the im-

plementation fulfils the specification.) In this way the application programmer's

task is simplified, the interface is easy to understand, but above all, justice is

done to the information hiding principle, allowing synchronisation and protec-

tion to be organised in an orderly and straightforward manner.

For example, in the instance section of a type definition a programmer

might make the following abstract variable declaration:

Date dateOfBirth;

This is equivalent to the following method pair
27

:

27

 As is common in OO languages, Timor allow the overloading of method names.

Chapter 5 ABSTRACT VARIABLES AND RECORDS 34

final op Date dateOfBirth(Date dateOfBirth);

final enq Date dateOfBirth();

The modifier final, when associated with a method, means that the method in

question cannot be overridden in a subtype (to be discussed below). The user of

an object can access it in the familiar OO style, e.g.

if (mySon.dateOfBirth.day == 7) ...;

The compiler converts this into method calls, e.g.

if (mySon.dateOfBirth().day() == 7) ...;

An abstract variable declaration can be modified by the keyword final, in

which case there is only an enq method.

1 Standard Implementations of Abstract Variables

The standard implementation for abstract values has the following pattern:

state:

 Date dateOfBirth;

 ...

instance:

 final op Date dateOfBirth(Date dateOfBirth)

 {return this.dateOfBirth = dateOfBirth;}

 final enq Date dateOfBirth()

 {return dateOfBirth;}

 ...

In order to take advantage of this, the programmer simply declares the state var-

iable; the compiler then automatically adds the implementation.

The same technique can be used for references and capabilities. Thus, if a

type definition includes the declaration of a reference, say, to another Person,

e.g.

Person* spouse;

this corresponds to two methods

final op Person* spouse(Person* spouse);

final enq Person* spouse();

with standard implementations

state:

 Person* spouse;

 ...

instance:

 final op Person* spouse(Person* spouse)

Chapter 5 ABSTRACT VARIABLES AND RECORDS 35

 {return this.spouse = spouse;}

 final enq Person* spouse()

 {return spouse;}

 ...

Similarly, if the Person definition includes a capability for a related file mod-

ule, e.g.

Document** birthCertificate;

this corresponds to two methods

final op Document** birthCertificate

 (Document** birthCertificate);

final enq Document** birthCertificate();

with standard implementations

state:

 Document** birthCertificate;

 ...

instance:

 final op Document** birthCertificate

 (Document** birthCertificate)

 {return this.birthCertificate = birthCertificate;}

 final enq Document** birthCertificate()

 {return birthCertificate;}

 ...

2 Records

Often for programming in the small, a type definition may consist entirely of

abstract variables; this is often called a "record", e.g.

type Person {

instance:

 String name;

 String address;

 Date dateOfBirth;

 Person* spouse;

 Document** birthCertificate;

}

In this case the compiler produces a standard implementation of the entire type

with the implementation name <typename>::Impl (here Person::Impl). If

abstract variables are not explicitly initialised the default methods are provided

automatically.

Chapter 5 ABSTRACT VARIABLES AND RECORDS 36

Hence abstract variables and records comply with the information hiding

principle without burdening the programmer with the work of declaring setter

and getter methods.

3 Using the Methods

Like other OO languages, Timor uses the dot notation to call the methods asso-

ciated with an instance of a type, i.e. <instance>.<method_call>. The in-

stance can be a value, a reference or a capability which is currently reachable.

Thus to initialise the name of Peter's spouse, where Peter is a Person ob-

ject declared as follows

Person* peter = new Person::Impl();

...

the following statement would be formally correct:

peter.spouse().name("Mary");

The nominated instance is <peter.spouse()> which is a method call to the

enquiry spouse in the instance record for peter. This returns a reference which

is then used as an instance to call the operation name associated with the in-

stance record for Peter's spouse; this sets the state variable called name to the

string "Mary".

Calling methods associated with abstract variables can be simplified so that

it appears if they could be accessed as variables, i.e.

peter.spouse.name = "Mary";

The compiler converts this back to method calls. This is necessary to ensure that

synchronisation and protection work correctly.

4 Final and Constant Values

Timor allows value variables to be defined as final or const. A final varia-

ble is one which must be initialised as part of the initialisation of the instance in

which it is embedded, and thereafter it cannot be reinitialised. However, all the

methods of its component instances can be invoked, as with final Java variables.

An interesting effect of final components is that the implementation cannot be

changed at run-time, potentially allowing a compiler to make optimisations.

A const variable is defined such that once it has been initialised neither it

nor its variables (recursively) can be modified after they have been initialised.

This implies that it and its variables must be fully initialised by its constructor
28

.

Thereafter its value can be read but not modified. The effect of declaring a vari-

28

 This statement is modified in chapter 11 section 2.

Chapter 5 ABSTRACT VARIABLES AND RECORDS 37

able as const is that only its enq methods and the enq methods of it variables

may later be invoked.

Attempts to violate the limitations associated with a final variable (i.e. at-

tempts to assign a new value to it) and with a const variable (i.e. attempts to

assign a new value to it or to invoke op methods on it) can be detected at com-

pile time.

5 Fixed and Constant References

A reference which has a fixed value (i.e. which cannot be changed) is declared

using the modifier fixed, e.g.

fixed Person* spouse = new Person.init();

Such a reference must be initialised at the latest by the constructor for the im-

plementation in which it is embedded
29

. Thereafter it cannot be changed. How-

ever, this is orthogonal to the issue whether content of the object to which it re-

fers can be changed. The latter is determined by the modifier const as follows.

Access to an object via a reference declared as const has the same effect

as if the object were accessed via a variable declared as const, i.e. only the enq

methods of the object and of its variables may be invoked via the reference. Be-

cause there is no dereferencing operator which would allow the value of a refer-

enced object to be modified directly, there is no need for a final modifier

(which would by analogy allow the object's instance methods to be invoked

without restriction but prevent assignments to the object as such) for references.

29

 See chapter 11 section 2, which describes how an exception can be implemented.

 38

 Chapter 6

Inheritance in Conventional

Object Orientation

Inheritance is widely regarded as one of the key advantages of OO program-

ming. It is concerned with two different but related concepts: subtyping and

subclassing. The first enables programmers to take advantage of polymorphism

in their programs; the second allows code to be re-used. Both are based on the

idea of extending classes of objects. These two concepts are first discussed in a

fairly general way in this chapter and then in further chapters the Timor ap-

proach is described. The following discussion by no means exhausts the theme

of inheritance in conventional OO languages, but instead concentrates on the

points which are significant for understanding Timor.

1 Subtyping and Subtype Polymorphism

Given a base type, e.g. Person as defined in chapter 5 section 2, this can be ex-

tended in different ways to model more specialist kinds of persons, e.g. a stu-

dent, a tutor, a professor. The extended types are called subtypes (here subtypes

of Person). In each case further attributes
30

 can be added. The result is that dif-

ferent subtypes of the same type (called the supertype) have some features in

common (here those defined in Person) but they also have some additional fea-

tures which are not shared. This is how a subtype Student might be defined in

Timor:

type Student {

extends:

 Person;

instance:

30

 i.e. abstract variables and/or (other) methods (see chapter 5).

Chapter 6 INHERITANCE IN CONVENTIONAL OBJECT ORIENTATION 39

 String university;

 Int studentId;

 String faculty;

 Date commencement;

 String degree;

}

The extends clause indicates that the methods of Person are automatically in-

cluded as methods of students. This commonality allows polymorphism to be

introduced by allowing an instance of a subtype to be assigned to a variable (or

parameter) of its supertype, e.g.

Person* aPerson;

Student* aStudent = new Student::Impl();

...

aPerson = aStudent;

Note:

The effect of the last line is that the reference aPerson points to the same object

as the reference aStudent. In Timor a value assignment (i.e. a copy operation)

causes the entire value of a subtype to be copied (in contrast with C++). Thus

the statement

Person aPersonValue = *aStudent;

results in the value aPersonValue holding an entire Student value
31

.

This has the advantage that a Student instance can now be treated as a

Person in all contexts which expect Person instances. For example a Student

instance can be passed as a parameter to methods which expect to receive a

Person instance as a parameter, or it can be added to a list of Person instances,

etc. This works because only the methods of Person can be applied to instances

which are assigned to a variable declared as being of type Person. It does not

work the other way around, because although every student, tutor, etc. is a per-

son, not every person is a student, tutor etc.

The subtyping paradigm is not limited to two levels. It is possible for ex-

ample to extend, say, a Professor (i.e. a Person) to a ScienceProfessor or

an EngineeringProfessor, etc.

A subtype hierarchy may, but need not, contain abstract types (i.e. types

which help modelling and polymorphism but which are never instantiated as real

types). For example an abstract type collection might be extended to (i.e.

31

 The dereferencing operator * preceding the name of an object pointer or ** preceding

the name of a capability) returns the value of the object or file.

Chapter 6 INHERITANCE IN CONVENTIONAL OBJECT ORIENTATION 40

more precisely defined as) concrete types such as list, bag and set, which

have at least methods which are defined in collection, such as insert element,

remove element, etc.

2 Diamond Inheritance

A particular issue arises when a type needs multiple sets of attributes. For exam-

ple if a senior student is also a tutor, a type is needed which contains the attrib-

utes of a person together with additional attributes for a student and for a tutor.

This is sometimes called diamond inheritance, because it is no longer simply

hierarchical but requires a network structure that forms a diamond to express the

idea graphically (see Figure 6.1).

This is a special case of multiple inheritance (StudentTutor inherits some

properties from Student and some from Tutor, but also – indirectly – proper-

ties from Person). In such cases subtyping is not always a particularly attractive

modelling technique; the more subtypes are required, the more problematic the

inheritance becomes. Consider that a person can be a male or female and can be

a member of a library and several sports clubs, etc. at the same time as being a

student-tutor. To model such complexity (which may well be required in a data-

base) by means of conventional subtyping, is not always a suitable approach,

because each possible combination must exist in a separate subtype definition
32

.

Furthermore subtyping suffers from the problem that if a person changes his/her

attributes after a while (e.g. ceases as a student and commences as an employee)

this requires the deletion of one object and the creation of another; modifying

the existing object is not possible.

While some OO languages (but not all) can support diamond inheritance,

usually this is in a limited form and it creates complications both in terms of

type definitions and implementations. Furthermore it doesn't fit well with the

32

 In OO programming the possibility of modifying the behaviour of a supertype in sub-

types further adds to the complexity.

Person

Student Tutor

Figure 6.1: Diamond Inheritance

StudentTutor

Chapter 6 INHERITANCE IN CONVENTIONAL OBJECT ORIENTATION 41

idea of supporting components which can easily be added to an application. This

issue will be considered later.

3 Multiple and Repeated Inheritance

Figure 6.2 provides an example of how an entertainment device type might in-

herit from two simpler entertainment device types, in one case repeatedly. In

most OO languages defining and implementing such a type using conventional

inheritance techniques would be difficult, if not impossible.

4 Method Redefinition

In standard OO it is possible to override a method by changing its code in the

subtype. However, changing code is an implementation technique. Usually, the

behaviour of a method changes when its implementation changes, although that

is not necessarily the case. Unfortunately it is not usually possible in conven-

tional OO languages to distinguish between changes in behaviour and changes

in the code.

5 Subclassing and Code-Reuse

Just as the attributes of a supertype are inherited in a subtype, so also the code

which implements these attributes is re-used in implementations of the subtypes.

This may seem to be a good idea, and in straightforward cases it often is. But in

conventional OO programming languages subtyping and subclassing are very

strongly related by the fact that they do not usually distinguish between type

definitions (which are concerned with defining the logical attributes and proper-

ties of objects) and implementations of the type. These are bundled together into

a single class definition which defines both the interface and the implementation

of a class of objects
33

.

The OO technique of combining subtyping and subclassing into a single

mechanism causes problems in some cases, especially where multiple inher-

itance is involved. For example there are difficult issues involving both diamond

33

 Java allows interfaces to be defined separately, but this is optional for programmers,

and there are restrictions regarding what can be defined in interfaces.

Figure 6.2: Multiple and Repeated Inheritance

Radio CD Player2

Radio Double CD

CD Player1

Chapter 6 INHERITANCE IN CONVENTIONAL OBJECT ORIENTATION 42

inheritance (see Figure 6.1) and multiple inheritance from more than one super-

type (see Figure 6.2). Even in the case of single inheritance there can be prob-

lems. For example a type DoubleEndedQueue is not a true subtype of the type

Queue (nor is a Queue a subtype of DoubleEndedQueue) and should therefore

not be used polymorphically; but it is convenient to re-use the code of Queue to

implement DoubleEndedQueue or vice versa [9].

6 Overriding Methods

It can sometimes be useful in a subtype to modify the implementation of meth-

ods which are inherited. This is achieved in conventional OO by repeating the

method heading from the supertype class in the definition of the subtype. In

some circumstances it can be useful as part of the new implementation of the

method to invoke the original method in the supertype. This can usually be

called by using a keyword such as super, but that only works for single inher-

itance.

7 Conclusion

There are several problems in the conventional OO paradigm, which Timor

avoids, as is described in the following chapters.

 43

 Chapter 7

Type Inheritance

in Timor

Timor's approach of separating types from their implementations has proved to

be a valuable tool for overcoming the problems mentioned in chapter 6. In Ti-

mor, subtyping, polymorphism and method behaviour are issues relevant only to

the definition of types. By separating these from issues related to implementa-

tions, Timor is able to define subtypes involving diamond inheritance [10], sub-

types which have multiple and repeated supertypes [11] and the redefinition of

methods.

The keyword includes has been introduced into Timor as an alternative to

extends. Whereas the latter indicates a genuine subtyping relationship, the for-

mer indicates that a type definition includes the methods of another type without

implying a subtype relationship. Consequently if a DoubleEndedQueue defini-

tion indicates that it includes Queue the compiler does not permit a

DoubleEndedQueue variable to be assigned to a variable of type Queue. To-

gether these two techniques (extension and inclusion) are referred to as deriva-

tion.

1 Single Inheritance

The inheritance examples shown in the more general discussion of inheritance

(chapter 6 section 1) have already illustrated the Timor approach to very simple

single inheritance.

2 Method Redefinition

Following the Java approach [20] to method collisions, Timor distinguishes be-

tween collisions merely in the names of methods and collisions of method signa-

tures. Collisions of complete method signatures are treated as cases of redefini-

tion, while collisions simply in the names of methods (i.e. where the signatures

Chapter 7 TYPE INHERITANCE IN TIMOR 44

otherwise differ) are treated as overloading. When overloading occurs, each in-

herited method is considered to be a separate method. Thus discussions of colli-

sions in the sequel refer to cases where the method signatures are indistinguish-

able.

It is possible in Timor to separate the redefinition of behaviour of a method

from the overriding of its code, simply because behavioural redefinition is a

matter which affects type definitions while overriding is an implementation is-

sue. Thus in derived type definitions there is a section headed by the keyword

redefines, which list the methods in question and allows the new behaviour to

be informally redefined in comments
34

.

3 Views

Timor provides a further construct related to inheritance, called a view. Some

programming language experts would consider this to be an abstract type. How-

ever, treating a view as a separate construct allows it to be used without all the

properties associated with abstract types, but with other features not usually as-

sociated with abstract types.

A view is a set of related interface methods which can usefully be included

in many types (using extends or includes), without embodying the central

concept usually associated with a type. For example, when modelling vehicles

one might create a subtyping hierarchy which includes an abstract type Car.

This clearly embodies a central concept behind a certain class of motor vehicles,

and it may have a number of concrete subtypes corresponding to particular mod-

els of cars. Thus both the concrete and the abstract types generally correspond to

nouns. But Timor views correspond rather to a certain class of adjectives, often

ending in "able" and describing some aspect of many kinds of objects, often of

quite different types. Here is an example of a Timor view which might usefully

be included in the definitions of many types of devices and products.

view Switchable {

instance:

 op void switchOn();

 op void switchOff();

 enq Boolean isSwitchedOn();

}

This might for example be used to extend a type Radio, as follows:

type Radio {

34

 It is a long term aim to enhance the design of type definitions in Timor with a more

formal technique for defining the behaviour of methods.

Chapter 7 TYPE INHERITANCE IN TIMOR 45

extends:

 Switchable;

instance:

 setStation(...);

 ...

}

With this definition a Radio instance could be assigned polymorphically to

a Switchable variable, e.g.

Radio aRadio = Radio::Impl();

Switchable s;

s = aRadio;

Views can, but need not, have implementations.

Views are normally defined explicitly, but they can also be defined retro-

spectively from methods in existing type definitions and used as if the type had

been defined by extension. For example an instance of a type which had been

declared (without the use of a view) with instance methods such as switchOn

and switchOff, could be assigned to a view variable Switchable, provided

that the corresponding method definitions are identical.

4 Multiple and Repeated Inheritance

Assuming the existence of two type definitions, one for a type Radio and one

for a type CdPlayer, the example of multiple and repeated inheritance illustrat-

ed in Figure 6.2 can be defined in Timor as follows.

type RadioDoubleCdPlayer {

 extends:

 Radio r;

 CdPlayer cd1, cd2;

}

Notes:

1) To achieve inheritance from multiple types, the syntax of the extends sec-

tion allows more than one type to be listed.

2) To allow for repeated inheritance, identifiers (called part names) have been

associated with the type names. (Note: The identifier r could be omitted

from the Radio type, but it has been included as it will prove useful in the

implementation presented in the next chapter.)

3) In this form the extends section looks rather like an instance section

containing abstract variables, but they are not! In fact the modelling of such

types is sometimes presented in that form (known as aggregation), but then

Chapter 7 TYPE INHERITANCE IN TIMOR 46

it cannot achieve two results which are straightforward in Timor: the poly-

morphic aspect (e.g. assigning a RadioDoubleCdPlayer to a variable of

type Radio or of type CdPlayer) and the redefinition of methods.

We now consider the last two points from the viewpoint of type definitions.

a) Polymorphism: If repeated inheritance is not involved, part names need not be

used. In that case a subtype can be assigned to a supertype variable in the usual

way, e.g.

RadioDoubleCdPlayer rdcd = RadioDoubleCdPlayer::Impl();

Radio aRadio = rcdc;

However to do this where repeated parts are involved would be ambiguous, so in

this case it is essential to nominate the part required, e.g.

CdPlayer aCD = rcdc.cd2;

b) Method Redefinition: In the original definition of Radio the view

Switchable was included by extension. Assuming that this was also included in

the type CdPlayer, its methods would appear three times in RadioDoubleCd

Player, providing separate switching mechanisms for the three main compo-

nents of the type, which would hardly be satisfactory. If aggregation had been

used to model this device, this could not be changed. Timor can achieve the

same result as that of aggregation; for example to switch on the separate switch

for the second CdPlayer, the programmer could write:

rcdc.cd2.switchOn();

 However, if the intention were to provide a single switchOn() method

for both CdPlayer devices, the Timor definition of the combined device could

be formulated as follows:

type RadioDoubleCdPlayer {

 extends:

 Radio r;

 CdPlayer cd1, cd2;

 redefines:

 [cd1, cd2] op void switchOn();

}

where the square brackets indicate which methods should be merged. However,

it would be tedious to repeat this for all the methods of Switchable, especially

if all three switches were to be merged. To do this, the programmer simply has

to write

 redefines:

 [r, cd1, cd2] Switchable;

Chapter 7 TYPE INHERITANCE IN TIMOR 47

Finally, the user of such a device must be able to determine which of the devices

should actually be in use at any particular time. For this purpose a new instance

method (and an accompanying enumeration type) can be added:

enum Mode {playRadio, playCD1, playCD2}

type RadioDoubleCdPlayer {

 extends:

 Radio r;

 CdPlayer cd1, cd2;

 redefines:

 [r, cd1, cd2] Switchable;

 instance:

 op void changeMode(Mode m);

 // determines which device is active

}

5 Diamond Inheritance

Timor has a rule that when multiple types extend a single common ancestor, the

methods of the base type appear only once in the new type. Thus at the type lev-

el there is no problem in defining situations which lead to simple diamond inher-

itance. Thus given types Student and Tutor, which both extend Person, the

following definition suffices:

type StudentTutor {

 extends:

 Student;

 Tutor;

}

In appropriate cases methods can also be redefined. However, using this OO

style does not solve the problems mentioned earlier, i.e. that new attributes can-

not be added to individual objects based on this type definition and that attrib-

utes cannot be removed or changed without deleting and creating instances of

the type. For such reasons Timor has an alternative mechanism (called attribute

types), which is especially useful in database applications, but which can of

course be used in any program, since Timor is a persistent programming lan-

guage. This technique, which is not based on conventional inheritance, is intro-

duced in chapter 9.

Part identifiers, which were introduced to permit repeated inheritance in

types with multiple ancestors, can also be declared in types which share a com-

mon ancestor. The following shows how a type can be defined in which a stu-

dent is a tutor in two departments.

Chapter 7 TYPE INHERITANCE IN TIMOR 48

type StudentTutor {

 extends:

 Student;

 Tutor dept1, dept2;

}

6 Inheriting from a Common Abstract Ancestor

The Timor Collection Library (TCL) provides a good example of the type issues

associated with multiple inheritance from a common abstract ancestor. The fol-

lowing is based largely on the doctoral thesis of my former assistant Dr. Gisela

Menger [2].
35

The first criterion is concerned with the decision whether duplicates are

permitted in collections of items (as in a mathematical bag), and if they are not

permitted, whether they are simply ignored (as in a mathematical set), or wheth-

er an error is signalled when an attempt is made to insert a duplicate (which is

often important in database applications).

The second criterion is concerned with the order of the elements in a col-

lection, i.e. whether they are unordered (as in a mathematical bag or set), wheth-

er they are user ordered (as in a list) or whether they are automatically sorted

according to some criterion, e.g. alphabetically.

The TCL supports all nine combinations, as is shown in Table 7.1.
36

Collection

Type Name

Duplication

Criterion

Ordering

Criterion

Bag Allow duplicates No ordering

Set Ignore duplicates No ordering

Table Signal duplicates No ordering

List Allow duplicates User ordered

OrderedSet Ignore duplicates User ordered

OrderedTable Signal duplicates User ordered

SortedList Allow duplicates Sorted

SortedSet Ignore duplicates Sorted

SortedTable Signal duplicates Sorted

Table 7.1.: The concrete collection types

In addition there are five abstract types which are used to enhance polymor-

35

 In practice the TCL is defined generically. Genericity in Timor is introduced in chapter

12.
36

 The following description is based largely on parts of section 4 of [8].

Chapter 7 TYPE INHERITANCE IN TIMOR 49

phism. The full type hierarchy is shown in Figure 7.1.

In order to guarantee behavioural conformity, all the common methods of

all collection types are initially defined in the abstract type Collection. Thus it

has a method insert, for example, but this does not define

– how an insertion affects the ordering of the collection,

– whether the insertion will be successful if it involves inserting a duplicate,

– whether an exception will be thrown to indicate a duplicate (but it defines

an exception DuplEx which might be thrown).

An abstract type with such non-deterministic methods is designed to allow

a maximum of polymorphism. In derived types the actions of the insert meth-

od are specified more precisely, depending on the node in question. Thus the

insert method of the abstract type UserOrdered defines that insert appends

the element at the end of the collection (and adds new methods for inserting at

other positions) but without defining its duplication properties further. On the

other hand the insert method of the concrete type Bag is defined without speci-

fying ordering, but indicating that duplicates are accepted (with the effect that

the exception DuplEx can be removed from Bag's insert method).

Such redefinitions of methods must be reflected by listing them in a

redefines clause of a derived type. As Timor does not support a formal speci-

fication technique, only the headers of such methods are listed, but these can

include comments describing their intended behaviour. Sometimes a redefinition

can lead to a change in the method header (e.g. where an exception defined in a

parent type is not thrown in a derived type, cf. Collection with Bag), but in

many cases the method header remains the same (though hopefully program-

mers will be encouraged to document the redefined behaviour in comments).

Collection

Ordered

Table

Ordered

Sorted
User

Ordered
Bag

DuplFree

Set Table

Ordered

Set

Sorted

List

List

Sorted

Set
Sorted

Table

Figure 7.1: Structure of the TCL Collection Types

Chapter 7 TYPE INHERITANCE IN TIMOR 50

7 Type Rules

Type Inheritance Rule 1: If in a derived type multiple methods with the same

signature
37

 are derived from a common ancestor, they are treated as a single

method (unless they have different return types, in which case a compile time

error arises).

Type Inheritance Rule 2: If the definitions of such methods differ (i.e. if one or

more of them has been redefined differently from the definition in their closest

common ancestor), they must also be listed in a redefines clause in the type

being defined.

Rule 2 in effect requires that conflicting definitions are clarified. If a definition

in one of the ancestors can be used in the new type, this can be signalled by the

use of the keyword from followed by the name of a type, e.g.

redefines {

 op void insert(ELEMENT e) from UserOrdered;

}

8 Handles

The assignment of subtype instances to supertype variables in Timor is normally

restricted in the sense that value instances can only be assigned to value varia-

bles of the same type, object instances to object variables of the same type and

capability instances to capability variables of the same type. However, the type

name in a declaration can be followed by three asterisks, with the meaning that

instances (of that type) in any of the three modes can be assigned to such a vari-

able (e.g. Person***). Such variable declarations are called handles. If a varia-

ble has the three asterisk notation, all values, references and/or capabilities of

that type (or a subtype) can be assigned to it. This is useful in cases where the

mode of the object is irrelevant, e.g. in methods which compare the values of

two instances of the same type.

Furthermore, variables can be declared to have a special type Handle. This

is the supertype of all types, in the limited sense that any variable of any type

can be assigned to such a variable, provided that the mode is correct. (If the dec-

laration is of type Handle***, then variables of any type in any mode can be

assigned to it.) However, this "type" has no methods, and no instances can be

created from it. One important use is to allow variables to serve as repositories

for temporarily storing items of different types. Thus the designation Handle**

is useful in defining ModelOS directory types which hold capabilities, where

37

 As in Java, exception declarations are not considered to be part of the signature of a

method.

Chapter 7 TYPE INHERITANCE IN TIMOR 51

different entries must hold capabilities but not necessarily for the same type of

modules.

9 Cast Statements

Cast statements allow the instances assigned to variables to be treated according

to their actual type. For example if a Student instance is assigned to a Person

variable, a cast statement can be used to check whether it really is a Student,

and then treat it accordingly. (Remember that not all Person variables have

Student instances assigned to them.)

The Timor cast statement is one of the few statements which is radically

different from its counterparts in conventional OO languages. One reason for

this change is to allow for the use of handles for the different modes of instanc-

es, but another is to improve run-time safety against programmer errors.

A simplified form of the Timor cast statement is as follows:

cast (variable | parameter) as {

 (variable declaration 1) {code for alternative 1}

 (variable declaration 2) {code for alternative 2}

 ...

 [else {optional code if no match}]

}

For example, to check whether a Student object or a Professor object is as-

signed to a Person variable called aPerson, the programmer can write:

cast (aPerson) as {

 (Student s) {code which addresses aPerson as s,

 if the underlying object is a Student}

 (Professor prof) {code which addresses aPerson as prof,

 if the underlying object is a professor}

else {code to be executed if aPerson is neither a Student

 nor a Professor}

}

Modes are relevant in cast statements and handles can be used. It is possible to

cast upwards, sideways and downwards.

10 Comparison Operators and Subtyping

Comparisons between separate instances are not carried out via methods de-

clared in the type, but in a related co-type (see chapter 11). If a comparison op-

erator is used to compare the values of two instances which have different static

types but have a common supertype, the equal and/or less methods of the

standard co-type of the nearest common supertype are applied. Thus if a

Chapter 7 TYPE INHERITANCE IN TIMOR 52

Student instance is compared with say a Professor instance (or a Person in-

stance) the Person&s
38

 equal and/or less methods will be selected.

38

 Person&s is the standard co-type for Person (see chapter 11).

 53

 Chapter 8

Implementations and Code Re-Use

in Timor

Whereas in conventional OO programming languages the re-use of code is

achieved via subclassing, which is based on inheritance, Timor separates code

re-use entirely from inheritance. An implementation of a type is designated as

the type name followed by a double colon followed by an implementation name,

e.g. Queue::ArrayImpl designates an implementation (called ArrayImpl) of

the type Queue. Each type must have at least one implementation, called

<typename>::Impl. However, this must not necessarily have been explicitly

coded. For example, the basic types have an implicit implementation; similarly

the compiler can automatically provide implementations for abstract variables

and records.

1 Re-Use Variables

To support code re-use in Timor a new concept, called re-use variables, is intro-

duced. Like other concrete variables, such variables are included in the state

sections of implementations, but unlike most other variables which typically ap-

pear in a state section, they may be declared either as types or as implementa-

tions. They may not be declared as local variables in individual methods.

Re-use variables are like normal variables in that they form part of the state

of the implementation in which they are declared. They are recognisable because

their declarations begin with a hat symbol (^), e.g.

^Queue myQueue = Queue::ListImpl(); /* Here the re-use

 variable myQueue is declared as a type variable and

 a list implementation constructor initialises it */

 or

^Queue::ArrayImpl myQueueImpl = Queue::ArrayImpl(100);

 /* Here the re-use variable is declared as an implementation

Chapter 8 IMPLEMENTATIONS AND CODE RE-USE IN TIMOR 54

 variable and is initialised by an array implementation

 constructor */

or in the case of a typeless implementation simply

^::usefulCode

In all cases the programmer of the implementation in which the declarations are

embedded has access to their interface methods, but in the case of an implemen-

tation variable being declared, the programmer can also access its internal state

variables and its private instance methods. (If a re-use variable is declared via a

type declaration, a maintenance programmer can recognise immediately that any

implementation of the type can be used.)

A re-use variable may even be another implementation of the type being

implemented. On the other hand the type of a re-use variable does not necessari-

ly have any formal relationship with the type being implemented, except that

some (or all) of the interface methods may have the same definition.

The important difference between a re-use variable and a normal variable is

that the compiler compares the definitions of its interface methods with those of

the type being implemented. If some of these have matching signatures, it uses

the methods of the re-use variable to implement them, unless the programmer

has also declared the same method explicitly in the instance section. In the

latter case the explicit method in effect overrides that provided by the re-use

variable.

Interface methods of a re-use variable which do not match the type defini-

tion are ignored. However they can be invoked in the implementation by pro-

grammers.

2 Clashing Methods in Re-Use Variables

Several re-use variables can appear in a state section. If more than one of these

has a method which matches an interface method of the type being implement-

ed, the first match (in the order of the declarations) is selected, though the pro-

grammer can override this by declaring the clashing method explicitly in the

instance section and then from this method simply invoking the preferred

method implementation.

This technique easily imitates (and simplifies) the standard OO techniques

of delegation and normal subclassing. Since there is no relation between the type

of the re-use variable and the type in which it is embedded, the former can be a

subtype or a supertype of the latter or it may implement a formally unrelated

type.

Here is an example of how an implementation of Person might be used to

Chapter 8 IMPLEMENTATIONS AND CODE RE-USE IN TIMOR 55

implement Student.

impl Student::Impl {

state:

 ^Person aPerson = Person::Impl();

 // re-uses any implementation of Person

 ...

instance:

 /* the Student public methods added in the subtype

 are implemented here and methods of Person can also be

 overridden */

}

3 Reversing the Re-Use Relationship of Subtypes

Since any implementation in Timor can be a complete implementation of a type

(without using re-use variables), an implementation of Student might be coded

independently of an implementation of Person. In this case the re-use relation-

ship can be reversed, e.g.

impl Person::Impl {

state:

 ^Student aStudent = Student::Impl();

}

In this example an instance section is not needed (unless overriding is re-

quired), because all the methods of Person can be matched in the methods of

Student.

4 Re-Use of Independent Types

Similarly, given the following definition of the type DoubleEndedQueue,

type DoubleEndedQueue {

includes:

 Queue;

instance:

// methods added to make the queue double ended

}

and an implementation DoubleEndedQueue::Impl, here is a complete imple-

mentation of the type Queue:

impl Queue::Impl {

state:

^DoubleEndedQueue deq = DoubleEndedQueue::Impl();

}

Chapter 8 IMPLEMENTATIONS AND CODE RE-USE IN TIMOR 56

The various implementations of a type are in principle independent of each other

and where appropriate the methods can be re-implemented from scratch without

code re-use. Since the types DoubleEndedQueue and Queue are not related at

the type level, no polymorphic problems arise.

5 Overriding Code

In Timor the OO concept of overriding, as an implementation concept, simply

involves providing a new implementation for a method in an instance section.

This overrides any clashing methods from re-use variables. If it is appropriate to

re-use some of the code from another implementation the latter is included as a

re-use variable, and its method(s) can be called in the normal way.

6 Implementing Views

In preparation for presenting an implementation of multiple and repeated inher-

itance, a trivial implementation of the view Switchable is now illustrated:

enum SwitchState {off, on}

impl Switchable::Impl {

state:

 SwitchState switch = off;

instance:

 op void switchOn() {switch = on}

 op void switchOff() {switch = off}

 enq Boolean isSwitchedOn() {return switch}

 }

}

7 Implementing Multiple and Repeated Inheritance

Re-use variables have the advantage that they re-use not only the methods of an

implementation but also its state. This greatly simplifies the implementation of

types which use repeated inheritance, since in such cases multiple versions of

state variables might be required. First the type Radio is implemented:

impl Radio {

state:

 ^Switchable = Switchable::Impl();

instance:

 setStation(...);

 // an implementation of the the remaining Radio methods

 ...

}

This, together with a similar implementation of CdPlayer, is now re-used in the

Chapter 8 IMPLEMENTATIONS AND CODE RE-USE IN TIMOR 57

combined device, illustrating the re-use of state, as well as access to and the

overriding of methods of re-use variables:

impl RadioDoubleCdPlayer::Impl {

state:

 ^Radio r = Radio::Impl();

 ^CdPlayer cd1 = CdPlayer::Impl();

 ^CdPlayer cd2 = CdPlayer::Impl();

 SwitchState theSwitch = off;

 Mode currentMode = playRadio;

instance:

 op void switchOn() // overrides this method

 {theSwitch = on; r.switchOn(); currentMode = playRadio}

 // the radio is on by default

 op void switchOff() {

 case (currentMode) of {

 (playRadio) {r.switchOff();}

 (playCD1) {cd1.switchOff();}

 (playCD2) {cd2.switchOff();}

 }

 }

 enq Boolean isSwitchedOn(){return theSwitch;}

 op void changeMode(Mode m) {

 case (m) of {

 (playRadio) {cd1.switchOff(); cd2.switchOff();

 r.switchOn();}

 (playCD1) {r.switchOff(); cd2.switchOff();

 cd1.switchOn();}

 (playCD2) {r.switchOff(); cd1.switchOff();

 cd2.switchOn();}

 }

 currentMode = m;

 }

}

8 Implementing Diamond Inheritance

We apply re-use variables in what at first sight might appear to be the obvious

way to implement a StudentTutor.

impl StudentTutor::Impl {

 state:

 ^Student s;

Chapter 8 IMPLEMENTATIONS AND CODE RE-USE IN TIMOR 58

 ^Tutor t;

}

Although this syntactically matches the type definition, semantically it does not,

because each of the two re-use variables has its own state, i.e. there are two sets

of state variables for the Person part of each! Including a further re-use variable

^Person p does not solve the problem as such, since any Student or Tutor

methods which might access the Person part would access the wrong Person

state. It would be possible to override these methods to produce a correct result,

but this would create considerable work for the programmer, which would in-

crease with each added attribute.
39

 This problem arises as a result of the lack of

genuine modularity behind the idea of subtyping, which binds extensions very

tightly (not as attachable units) to a base type.

Other consequences of this phenomenon have already been mentioned, viz.

the inability to add and remove attributes dynamically for individual objects.

Together, these issues, which are important in database applications, led to the

decision to introduce a new kind of type, which retains the key properties of

polymorphism but in a more modular way. This is described in the next chapter.

9 Implementing Types with a Common Abstract Ancestor

Since Timor does not bind implementations to their types in the form of sub-

classing, the Timor Collection Library (TCL) can be implemented in an unusual

way. The first type to be implemented is List, and the code of this implementa-

tion is declared as a re-use variable in standard implementations of all the other

concrete types, with remarkably few modifications. This is illustrated in chapter

13, which provides an outline of both the type definitions and implementations

of the TCL methods. Furthermore, application programmers are free to provide

their own implementations of the concrete TCL types and can also extend the

TCL type hierarchy and/or the TCL implementations.

However, this does not preclude the existence of other implementations of

individual types in the TCL (e.g. using a bit list to implement a fixed size set of

elements).

39

 It would of course be possible to implement StudentTutor from scratch.

 59

 Chapter 9

Attribute Types

Timor provides a modular alternative to a particular aspect of conventional in-

heritance, in the form of attribute types. These are useful primarily when a base

type (a concrete type such as Person) can potentially have subtypes which re-

quire add-on state, especially if for individual objects of the base type these can

change dynamically. Such types can often be defined largely in terms of Timor

abstract variables (corresponding to records in database systems, see chapter 5),

though additional methods can also be added.

Attribute types are not appropriate, for example, for defining subtypes

which primarily exhibit different variations on the behaviour of a base type (of-

ten, but not necessarily, an abstract type such as Collection) and which at the

individual object level have a state that is not logically extended by additional

state relating to its individual subtypes.

Timor's attribute types allow the add-on methods and state to be treated as

separate issues. Thus a type Person can be declared (as described in chapter 5

section 2), and can be instantiated as an object in the usual way. A separate type

Studying, which contains the attributes required to make a Person into a stu-

dent (but without the Person attributes) can also be defined and implemented.

This can be separately instantiated as an object and can then be attached to a

Person object (and later detached). Other attribute types can be defined in the

same way (e.g. a type Tutoring) and can also be attached to the same Person

object. In this way a StudentTutor can be created without the problems associ-

ated with diamond inheritance. This is possible because, although the individual

attribute types have static definitions, there is no requirement (in contrast with

the subtyping technique) for a combined type to exist statically.

1 Defining and Implementing Attribute Types

Generally speaking attribute types are given adjectival names (although this is

only a convention), because they add additional information to a base type, just

Chapter 9 ATTRIBUTE TYPES 60

as adjectives add information to a noun. Hence instead of naming an attribute

Student, for example, it is more appropriately called Studying, and when the

attribute is associated with a Person instance, it is appropriate to call this a

StudyingPerson. However, such a naming scheme is simply by convention.

Here is a possible definition of a type Studying, which looks very similar

to the definition of the subtype Student.

type Studying for Person {

instance:

 String university;

 Int studentId;

 String faculty;

 Date commencement;

 String degree;

}

The keyword for indicates that a type is an attribute type and also indicates the

base type (here Person) to which it can be attached. In this example an imple-

mentation, called Studying::Impl, would be automatically produced by the

compiler. Implementations follow the normal pattern (see chapter 5 section 2).

Attribute types can be defined for other attributes. For example an attribute

PartTime might be attached to the Tutoring attribute, to indicate a part-time

position as tutor.

The public methods of a base type can be accessed in an implementation of

the attribute type via the pseudo-variable base. Limiting the access in this way

ensures that no behaviourally non-conform accesses can take place, thereby

guaranteeing for other attributes attached to the same object that related prob-

lems cannot arise [10].

Attribute types can also be defined as for any; these can be attached to any

other type. Here is an example:

type Loanable for any {

instance:

 op void putOnLoan (Person* toWhom; Date loanDate);

 op void returnFromLoan(Date returnDate);

 Boolean currentlyLoaned; // an abstract variable

 Date dueDate; // an abstract variable

 enq Int daysOverdue();

 enq Person* borrower();

 enq Person* previousBorrower();

 enq Date dateLastReturned();

Chapter 9 ATTRIBUTE TYPES 61

 ...

}

The pseudo-variable base cannot be used in connection with for any.

2 Static Use of Attributes

Attributes can be composed statically into other types, as the following example

illustrates.

type DoubleStudyingTutor {

extends:

 {Studying s1, s2; Tutoring;} Person;

}

This can be instantiated and accessed in the normal way, e.g.

Person p = DoubleStudyingTutor::Impl();

String theUni = p.s2.university;

Because attribute types and implementations are simply add-on units which do

not include the base type, they can easily be used to solve the problems previ-

ously encountered in implementing diamond inheritance, as the following illus-

trates:

impl DoubleStudyingTutor::Impl {

state:

 ^Person;

 ^Studying s1;

 ^Studying s2;

 ^Tutoring t;

}

3 Instantiating Attribute Types

Attribute types can be instantiated as values or as objects, but not as modules

known to the operating system, since neither ModelOS nor conventional operat-

ing systems support the idea of modules with add-on sections. However static

types which include attributes can be created as modules.

Once they have been instantiated as objects, attributes can be attached dy-

namically to other objects.

4 Attaching Attributes Dynamically to Objects

An attribute can be attached to an object of its base type as follows:

Person* p = new Person::Impl();

Studying* s = new Studying::Impl();

p += s; // attach s to p

Chapter 9 ATTRIBUTE TYPES 62

Given a further attribute type Tutoring, this could also be attached to the same

Person, e.g.

Tutoring* t = new Tutoring::Impl();

p += t; // attach t to p

The result is a studying tutoring person, equivalent to StudentTutor, but with-

out the complications of diamond inheritance. Multiple attributes of the same

type can be dynamically added to the same base object. Thus if the student de-

scribed above were enrolled in two universities, a second Studying attribute

could be added:

Studying* s2 = new Studying::Impl();

p += s2; // attach s to p

5 Removing Attributes from Objects

An attribute can be removed from an object without deleting it, e.g.

p -= s;

In this case it might be reattached to the same or a different object later. Howev-

er, an attribute can only be attached to one object at a time. Failure to follow this

rule leads to a run-time error.

Alternatively an attribute can be removed from its base object simply by

deleting it via its own object reference, e.g.

Person* p = new Person::Impl();

Studying* s = new Studying::Impl();

p += s;

...

delete(s);

If an attempt is made to access a previously attached but then deleted attribute,

an exception is thrown.

6 Casting with Attributes

For the attribute relationships described in the previous section, explicit casts

can succeed in both directions. For example to cast between Person and

Studying the cast would have a pattern such as the following:

Studying* s = new Studying::Impl();

...

String aName;

cast (s) as {

 (Person* p) {aName = p.name;}

 // only executed if s is attached to a Person instance

Chapter 9 ATTRIBUTE TYPES 63

}

and similarly

Person* p = new Person::Impl();

...

cast (p) as {

 [Studying* s] {if (s.uni == "Oxford") {...};}

}

In the second example the cast clause uses square brackets rather than round

brackets. This indicates that the corresponding code is to be executed repeatedly,

i.e. for each attached attribute of the matching type. In this way it is possible to

select all matching attributes.

7 Final Remark

As noted above, attributes cannot be instantiated as modules. But their im-

portance for ModelOS is that they provide a flexible way of building databases

in the ModelOS persistent virtual memory.

 64

 Chapter 10

Qualifying Types

Qualifying types are types which can qualify or modify the behaviour of the in-

stances of other types. We proposed the basic idea, under the name "attribute

types"
40

 in 1997 [21], when my research students and I were beginning to for-

mulate ideas for a new language to support ModelOS. In fact they are related

conceptually to the attribute types described in the previous chapter, in that both

can be viewed as adjectival types. To understand what is meant by this, consider

that in object oriented programming the emphasis is on defining objects which

in natural language usage are represented as nouns. These can often be qualified

by adjectives. For example a person (a noun) can be described as studying (an

adjective, actually an adjectival form created from a verb, known as a present

participle). In natural language, nouns (e.g. student) can exist which in a single

word convey the meaning of a more general noun (person) combined with an

adjective (studying). We used the corresponding pattern in the previous chapter

by allowing attributes to be added to objects to form more specific forms of ob-

ject, e.g. {Studying} Person.

Qualifying types are conceptually related to attribute types in that they also

allow us to express adjectival qualities (in this case often better expressed by

past participles, reflecting the passive voice, used as adjectives, e.g. monitored)

which can be associated with nouns. But whereas attribute types simply add new

behaviour which in computer terms is easily expressed as further attributes,

qualifying types added new features which can radically affect the behaviour of

the objects which they qualify.

Since the publication of the first paper in 1997 we have considerably de-

veloped the basic idea behind qualifying types [13, 22, 23, 24, 25, 14]. Qualifi-

ers (i.e. instances of qualifying types) play a central role for ModelOS by

40

 This should not be confused with the Timor concept of attribute types described in

chapter 9 above.

Chapter 10 QUALIFYING TYPES 65

providing a technique which gives its users an important mechanism for confin-

ing and controlling the flow of information from other modules, as is described

in chapter 24 of [6], see also [24]. But they also have other significant roles,

such as providing synchronising access to shared data, deceiving hackers and

recording activity of threads, etc. How they are implemented at the module level

in ModelOS is described in volume 2 chapter 24 of [6].

1 Qualifiers: The Basic Idea

A qualifier is an instance of a qualifying type which has all the normal features

of objects, including its own data and methods. But it also has some special

methods, known as bracket methods, which are designed to bracket the code of

other objects. There are two kinds of bracket methods, call-in and call-out

brackets, which are activated differently from normal methods. For readers un-

familiar with the idea behind these concepts we repeat part of the description in

chapter 13 of [6] in the following subsections.

1.1 Call-In Bracket Methods

When one object calls a method of another, this can be represented as shown in

Figure 10.1:

A qualifier can be associated with a target object such that its call-in brack-

et methods can "catch" a normal method invocation before it reaches the target

object (i.e. its qualified object), i.e. instead of the code of the method of the tar-

get being invoked, the code of the appropriate call-in bracket method is invoked

(see Figure 10.2).

method invocation

Client

Object

method return

Figure 10.1: A Normal Method Invocation

Target

Object

Client

Object

Qualified

Object

Bracket

Method

Qualifier

Object

Figure 10.2: A Qualifying Type with a Call-In Bracket Method

Chapter 10 QUALIFYING TYPES 66

Depending on how it has been defined, the bracket method may have ac-

cess to the parameters which the client object intended to pass to the qualified

object. But it has no access to the state data of either the client object or of the

qualified object.

1.2 The Body Statement

A call-in bracket method contains normal code, but it has one extra feature,

called a body statement. The effect of this is to call the method of the qualified

object which the client originally intended to call. This organisation of bracket

methods gives its programmer a number of interesting options.

1.3 Augmenting Bracket Routines

Additional code can be added before calling the qualified object (in the part of

the bracket method called a prelude). This code might for example access syn-

chronising variables in the data of the qualifier, thus causing an unsynchronised

qualified object to be synchronised. Or from the security viewpoint it might for

example maintain a log of calls to the qualified object which can later be printed

out or analysed by another computer program to detect attempts to hack the

qualified object.

 When the method of the qualified object has completed its task, it returns

to the postlude section of the call-in method (i.e. the statements following the

body call). In the postlude section it can, for example, release the synchronisa-

tion variables. This option, which augments the qualified object, is shown in

Figure 10.3.

1.4 Testing Bracket Methods

Code in the prelude can check some condition (e.g. a security condition) and

depending on the result might decide not to invoke the interface method of the

qualified object. The result might be that the target object is not called at all.

This is illustrated in Figure 10.4.

Client

Object

Qualified

Object

prelude;

body;

postlude;

Qualifier

Figure 10.3: An Augmenting Bracket Method

Chapter 10 QUALIFYING TYPES 67

1.5 Replacing Bracket Methods

Finally, the bracket method need not contain a body call at all (not even in a

conditional statement). In this case the target object is in effect replaced by the

qualifying object. One possible use of this is to set up a qualifier as a decoy for a

hacker, which serves as a disinformation technique. Figure 10.5 illustrates this

possibility.

1.6 Multiple Qualifiers

More than one qualifier can be associated with a qualified object. In this case

there is a defined order such that the first is invoked as a result of a routine call

from a client object, the next is then invoked if this makes a body call, etc.; a

body call from the final qualifying object (if it ever happens) results in the target

object being called. The postludes are executed in reverse order.

1.7 Call-Out Bracket Methods

The principle of call-out bracket methods is similar to that of call-in methods,

except that

a) they are triggered by a call from a qualified object to some other object (the

call-out object);

b) a call statement (cf. the body statement for call-in methods) is used if the

call-out bracket decides to pass the call on to the call-out object.

Client

Object

Qualified

Object

prelude;

if test passed

body

else ...

postlude;

Qualifier

Figure 10.4: A Testing Bracket Method

Client

Object

Qualified

Object

prelude;

return

postlude;

Qualifier

Figure 10.5: A Replacing Bracket Method

Chapter 10 QUALIFYING TYPES 68

The basic concept is illustrated in Figure 10.6, where a qualifying object has

both call-in and call-out bracket methods. However, a qualifier can be pro-

grammed to have only call-in or only call-out routines if that is appropriate.

Call-out brackets can be freely programmed to include or omit a call state-

ment, and can optionally place it in a conditional statement.

At first sight it might be thought that call-out routines are superfluous, with

the argument that they could be implemented as call-in brackets of the call-out

object. However, this is not the case, because a call-in bracket is activated

whenever the qualified object is called, whereas a call-out bracket is activated

each time the qualified object makes a call to another object, not each time the

called object is invoked. However both a client object and its qualified object

can be qualified (usually, but not necessarily, by different qualifier objects), as is

shown in Figure 10.7.

The following sections describe how qualifying types are defined in Timor.

Figure 10.6: A Qualifier with Call-In and Call-Out Bracket Methods

Qualified

Module

Client

Module

Called

Module

prelude;

body;

postlude;

A CALL-IN

BRACKET

prelude;

call;

postlude;

A CALL-OUT

BRACKET

Qualifier

Figure 10.7: A Client with Call-Out and a Target with Call-In Brackets

Client

Module

prelude;

call;

postlude;

A CALL-OUT

BRACKET

Client

Qualifier

Qualified

Module

prelude;

body;

postlude;

A CALL-IN

BRACKET

Target

Qualifier

Chapter 10 QUALIFYING TYPES 69

2 Qualifying All the Methods of Any Type in the Same Way

It is possible to define qualifying types which have bracket methods that can

qualify any other type. Here is a simple but important example, which provides

basic synchronisation in the form of mutual exclusion:

library type Mutex {

qualifies any:

 op bracket all(...); /* this provides mutual exclusion

 and brackets all the instance methods of a

 target instance */

}

Notes:

1) The type Mutex has no normal instance methods and only one bracket

method. Most qualifiers have instance methods and can have more than one

bracket method.

2) It can qualify any other type, as is indicated in the qualifies clause.

3) The bracket method is an operation (op) because it modifies its own state

variable, i.e. a synchronising variable.

4) The special return type bracket indicates that the actual return type is that

of the method which it is currently qualifying.

5) The keyword all replaces a method identifier and is used to indicate that

the bracket method is used to qualify all the instance methods of its target,

including bracket methods, if any (but excluding open/close methods).

6) The bracketed ellipsis (...) indicates that it ignores (and cannot access)

the parameters of the methods which it qualifies.

The type Mutex can be implemented using semaphores, as follows:

impl Mutex::SemImpl {

state:

 Sem mutex = Sem::Impl(1);

qualifies any:

 op bracket all(...) {

 mutex.p();

 try {return body(...);}

 finally {mutex.v();}

 }

}

Notes:

1) The keyword body indicates where the target routine is called. The ellipsis

Chapter 10 QUALIFYING TYPES 70

(...) indicates that the original parameters are passed on when body is

executed.

2) The return statement indicates that the result parameters from the target

are passed back to the caller.

3) The body statement is embedded in a try ... finally statement because

the target (or a bracket method between this and the target) might throw an

exception. In this case it is important that the mutual exclusion is released.

4) Not all body statements need to be embedded in a try ... finally

statement, but for synchronisation it is usually important.

3 Distinguishing Between Reader and Writer Methods

The following standard example of reader-writer synchronisation illustrates how

reader and writer methods can be bracketed differently.

library type RwSync {

 // provides reader-writer synchronisation

qualifies any: // for any type

 op bracket op(...); // brackets op methods (writers)

 op bracket enq(...); // brackets enq methods (readers)

}

Notes:

1) This type provides separate bracket methods for the reader and the writer

methods of a target. The method definition op(...) stands for any method

of the target which is an operation. The method definition enq(...)

stands for any method of the target which is an enquiry.

2) As in the previous example, this qualifier can qualify any other type.

3) Although the second bracket method qualifies enquiries, it is itself an oper-

ation (op) because it modifies its own state variables, i.e. the synchronising

variables.

An implementation now follows. The code selects the reader priority algorithm.

impl RwSync::ReaderPriority { /* This is an implementation

 of the type RwSync which is given the name ReaderPriority */

state:

 RwSem rwEx = RwSem::Impl(); /* the standard constructor

 which provides reader-writer synchronisation */

qualifies any:

 op bracket op(...) { // the writer protocol

 RwEx.writep();

 try {return body(...);}

Chapter 10 QUALIFYING TYPES 71

 finally {rwEx.writev();}

 }

 op bracket enq(...) { // the reader protocol

 rwEx.readp();

 try {return body(...);}

 finally {

 rwEx.readv();

 }

 }

}

Note: The basic semaphore types Sem and RwSync are actually supported in

ModelOS (see chapter 15, section 4). The above are merely illustrations of how

bracket routines can function.

4 Qualifiers with Instance Methods

The previous examples are exceptional in that all their methods are bracket

methods. Most qualifiers have instance methods which are defined in a normal

instance section, i.e.

type typename {

instance:

 // the normal instance methods

qualifies qualified_type:

 // the bracket methods

}

To make an example more interesting it is shown how qualifying types can be

created by extension. First an access control list module is defined, without

bracket methods. This is useful as a stand-alone module.

seq AccessMode {noaccess, read, write}

type Acl { // a normal access control list

instance: // these are normal instance methods

 op void addUser(ContainerId user; AccessMode access)

 throws InvalidUser;

 /* adds a user to the ACL. This is used to check that

 thread owners have appropriate access

 to the controlled module */

 op void removeUser(ContainerId user)

 throws InvalidUser;

 // removes a user from the ACL

 enq AccessMode currentAccess(ContainerId user)

Chapter 10 QUALIFYING TYPES 72

 /* In ModelOS the identifier of a user is a (world-wide)

 unique identifier, which is the same as the identifier

 of his very first container (file) */

 throws InvalidUser;

 // returns the current access rights of this user

}

Then a qualifier is defined which inherits its methods.

type AclQualifier {

extends: Acl;

qualifies any:

 enq bracket op(...) throws InvalidAccess;

 enq bracket enq(...) throws InvalidAccess;

}

Assuming that an implementation Acl::Impl already exists, the implementation

of the qualifier can re-use this.

impl AclQualifier::Impl {

state:

 ^Acl::Impl theACL = Acl::Impl(); // a re-use variable

qualifies any:

 enq bracket op(...) throws InvalidAccess {

 /* The bracket routine checks that in writer routines

 the currently active thread has write access */

 ContainerId caller = kernel.currentThreadOwner();

 /* This is a call to a ModelOS kernel instruction, see

 chapter 15 */

 if (theACL.currentAccess(caller) != write)

 throw new InvalidAccess();

 else return body(...);

 }

 enq bracket enq(...) throws InvalidAccess {

 /* The bracket routine checks that in reader routines

 the currently active thread has at least read access */

 ContainerId caller = kernel.currentThreadOwner();

 if theACL.currentAccess(caller) == noaccess

 throw new InvalidAccess();

 else return body(...);

}

Notes:

Chapter 10 QUALIFYING TYPES 73

1) Timor programs can call some instructions of the ModelOS kernel without

presenting a capability
41

 by using the reserved name kernel as if it were a

callable object.

2) ContainerId is a built in type in Timor, along with similar in-built

ModelOS types.

5 Qualifying Specific Methods

Bracket methods can be defined to qualify specific methods of some type or

view. This possibility is illustrated using a view Openable, which can usefully

be added to many types.

enum OpenMode {closed, read, write}

view Openable {

instance:

 open void open(OpenMode mode) throws OpenError;

 close void close() throws CloseError;

 enq OpenMode openMode();

}

The following qualifier illustrates how objects/modules which incorporate this

view can be synchronised as readers and writers.

type OpenSynchroniser {

qualifies Openable:

 open void open(OpenMode mode) throws OpenError;

 /* allows multiple readers or a single writer.

 OpenError is thrown if the mode parameter is 'closed' */

 close void close() throws CloseError;

 /* throws InvalidAccess if current OpenMode is

 'closed', otherwise releases the synchronisation */

 enq OpenMode openMode();

qualifies any:

 enq bracket op(...);

 /* throws InvalidAccess if not open for writing */

 enq bracket enq(...);

 /* throws InvalidAccess if not open for read or write */

}

Notes:

1) This type has no instance methods, although it brackets instance methods of

the target module.

41

 See chapter 15, section 3.

Chapter 10 QUALIFYING TYPES 74

2) The target module must embody the view Openable. Defining this type to

qualify a view has the advantage that it can be used to qualify many actual

types which are openable.

3) The bracket routines listed in the qualifies Openable section qualify the

routines of the target which match the bracket method definitions.

4) A specific bracket method can access the parameters of the routine which it

qualifies if, as here for Openable, they are explicitly described. If the pa-

rameters of a specific method use the ellipsis notation (...) the bracket

method has no access to them.

5) The two bracket routines listed in the qualifies any section qualify those

routines of the target for which no specific bracket methods have been de-

fined.

Here is an implementation, which again uses reader priority.

impl OpenSynchroniser::ReaderPriority {

state:

 RwSem rwsem = RWSem::Impl();

 OpenMode currentmode = closed;

qualifies Openable:

 op void open(OpenMode mode) throws OpenError {

 case (mode) of {

 (closed){throw new OpenError();}

 (read) {rwsem.readp(); currentmode = read; body(...);}

 (write) {rwsem.writep(); currentmode = write; body(...);}

 }

 }

 op void close() {

 case (currentmode) of {

 (closed){throw new NotOpen();}

 (read) {try {return body(...);} finally {rwsem.readv();}

 (write) {try {return body(...);} finally {rwsem.writev();}

 }

 currentmode = closed;

 }

 enq OpenMode openMode() {return currentmode;}

qualifies any:

 enq bracket op(...) {

 if ((currentMode == closed) || (currentMode == read))

 throw new InvalidAccess();

 body(...);

Chapter 10 QUALIFYING TYPES 75

 }

 enq bracket enq(...) {

 if ((currentMode == closed)

 throw new InvalidAccess();

 body(...);

}

Notes:

1) The first part of the reader-writer protocols, for both readers and writers,

appears in the bracket method for the open method.

2) This also contains body statements allowing correct calls to proceed to the

main module. After body there is no postlude to be executed.

3) It would also be possible, for example, for the qualifier to have a simple

access control list of users with permitted access rights. In ModelOS this

could be used to allow the module's owner to revoke write access, while

continuing to allow read access.

4) The bracket for the openMode method returns without using body, as it al-

ready has the information required.

5) In principle this qualifier could be considered unnecessary in its present

form, since (almost) the same code could easily be implemented as a direct

(re-usable) implementation of the view. However, it was useful to present

this as an example, since it illustrates some aspects of qualifiers not previ-

ously discussed.

6 Call-Out Methods

The examples so far have only illustrated call-in methods. Call-out methods are

very similar to call-in methods. They can be defined independently or in the

same type as call-in methods. The following example shows how the original

mutual exclusion example might be enhanced by call-out brackets which release

mutual exclusion if the synchronised object calls another object and then re-

claims it after the call has completed
42

.

type ReleasableMutex {

qualifies any: // the call-in bracket methods

 op bracket all(...);

 /* provides the synchronisation needed to enter a

 target method */

42

 Such a module may not necessarily be useful, since when the call-out reclaims exclu-

sion, the state of the synchronised object might have changed. However the example is

useful for illustrating the principle of call-in and call-out brackets.

Chapter 10 QUALIFYING TYPES 76

callout any: // the call-out bracket methods

 op bracket all(...); /* releases the synchronisation

 when the target invokes methods of any other object */

}

Notes:

1) Call-outs have a separate section headed callout.

2) This is the only formal difference at the type definition level.

Here is an implementation which re-uses that of the original example.

impl ReleasableMutex::SemImpl {

state:

 ^Mutex::SemImpl inMutex = Mutex::SemImpl();

callout any:

 op bracket all(...) {

 inMutex.mutex.v(); // releases mutual excl. on call-out

 try {return call(...);}

 finally {inMutex.mutex.p();} // reclaims mutual excl.

 }

}

Notes:

1) The same rules apply to bracket methods as to normal instance methods

with respect to the matching of methods in re-use variables. In this case the

call-in brackets are matched.

2) The call statement is the call-out equivalent to the body statement in call-

in brackets.

7 Combining Call-Out and Call-In Brackets

The following example illustrates how the same qualifier can be used in the

sending of messages between two separate modules. In this scenario Module A

invokes a method of Module B, sending it a plain text message as a parameter.

In the returned value of the same call Module B sends a plain reply back to

Module A.

The method in Module B which receives the message is defined in a view,

allowing it to be easily incorporated into many modules, and at the same time

facilitating the definition of the qualifier.

view Transmission {

 op Text transmit(Text message);

}

Bracket methods can be used to encrypt and decrypt the messages. Provid-

Chapter 10 QUALIFYING TYPES 77

ed that the call-out bracket is placed in the first position of the callouts associat-

ed with Module A and the call-in bracket in the last position in the call-ins of

Module B, the qualifier can be useful in at least two scenarios.

a) Within a single ModelOS node they can be used to ensure that other bracket

methods cannot read the message or the reply.

b) When transmitting a message between nodes they can ensure that the mes-

sage is not readable during transmission. (See further comment in the notes

below.)

type Encrypting {

callout Transmission:

 enq Text transmit(Text message);

 // encrypts message and decrypts reply

qualifies Transmission:

 enq Text transmit(Text message);

 // decrypts message and encrypts reply

}

The framework for an implementation is now described:

impl Encrypting::Impl {

state:

 String theMessageKey, theReplyKey;

constr:

 Encrypting::Impl(String key1, key2){

 theMessageKey = key1; theReplyKey = key2;

 }

callout Transmission:

 enq Text transmit(Text message) { // message is plain text

 Text encryptedMessage, encryptedReply, plainReply;

// this is the prelude: encrypt the message and send it

 encryptedMessage = encrypt(message, theMessageKey);

/* the following modifies the input message so that it is

 encrypted and passes it to the receiver (or next bracket)

*/

 encryptedReply = call(encryptedMessage);

/* when the postlude is activated it receives a reply which

 has been encrypted by Module B's call-in bracket */

 plainReply = decrypt(encryptedReply, theReplyKey);

// It decrypts this and places is in the return parameter

 return plainReply;

 }

Chapter 10 QUALIFYING TYPES 78

qualifies Transmission:

 enq Text transmit(Text message){ // message is encrypted

 Text decryptedMessage, encryptedReply, plainReply;

 // this is the prelude: decrypt the message and send it

 decryptedMessage = decrypt(message, theMessageKey);

 plainReply = body(decryptedMessage); // this illustrates

/* how in Timor an input parameter can be changed

 after return from body encrypt the reply and return it */

 encryptedReply = encrypt(plainReply, theReplyKey);

 return encryptedReply;

 }

instance:

 enq Text encrypt(Text plainText; String aKey) {

 ... // encryption algorithm

 }

 enq Text decrypt(Text encryptedText; String aKey) {

 ... // decryption algorithm

 }

}

Notes:

1) This configuration (see Figure 10.8) will only function on a single

ModelOS node, since it relies on the use of shared state variables. If the

modules are on different ModelOS nodes, the keys must first be exchanged

as separate messages (or a copy of the same qualifier, with the same keys,

could be used on each node).

2) The keys are not visible in the type definition, but only in the definition of a

constructor for a particular implementation (in this case with separate keys

for the message and for the reply). Different implementations might use dif-

Figure 10.8: An Encrypting Qualifier Bracketing a Sender and a Receiver

Module A
CALL-OUT

BRACKET

FOR

MODULE A

encrypts

message and

decrypts reply

Module B

Encrypting Qualifier

CALL-IN

BRACKET

FOR

MODULE B

decrypts

message and

encrypts reply

Chapter 10 QUALIFYING TYPES 79

ferent algorithms. For example a single key could be used for encrypting

both the message and the reply, or different keys might be needed for the

encryption and decryption algorithms, etc. None of this is visible from the

type definition and only the sender and receiver need know not only which

keys but which implementations are being used.

3) Although the instance section contains the encryption methods, these do not

appear in the type definition. This is how internal methods are implemented

in Timor.

4) The example illustrates how a bracket method can modify parameters and

return values.

8 Instantiating and Using Qualifiers

Qualifiers can be dynamically associated with the objects which they qualify, as

is described in section 8.1, or they can be statically associated with (i.e. "com-

piled into") their target objects, as is explained in section 8.2

8.1 Qualifying Target Objects Dynamically

Like attributes, qualifiers are often given adjectival names (which in this case

are frequently past participles). Their instantiation follows the normal pattern,

e.g.

AclQualifier* secured = new AclQualifier::Impl();

// AclQualifier is defined in section 4 above

This can be viewed as a normal object, and its instance methods can be invoked

(e.g. to add entries into the ACL). To use it as a qualifier involves placing it in a

list associated with the object(s) to be qualified. Objects of type Book can be in-

stantiated and secured as follows:

Book* myBook1 = new {Qualifier* secured} Book::Impl();

Book* myBook2 = new {Qualifier* secured} Book::Impl();

In this case both books are secured by the same actual qualifier with the same

ACL. The expression {Qualifier* secured} is an anonymous list literal
43

which in this example is permanently associated with its qualified object. The

list can contain multiple qualifiers, e.g. {Qualifier* secured, synchron

ised}, where synchronised might be a qualifier of type Mutex or RwSync, etc.

Since it contains copies of the qualifier references, the original, or other copies,

can be used to insert and remove entries in the ACL after the book and the list

43

 The type of this list is List<Qualifier*>*. Qualifier is a supertype of all

qualifiers. A List is a generic collection type which is part of the Timor Collection Li-

brary (TCL), described in chapter 13. For list literals see chapter 13, section 4.1.

Chapter 10 QUALIFYING TYPES 80

have been created.

A qualifier list can be explicitly created and attached to a new object, e.g.

List<Qualifier*>* qualified1 = new List<Qualifier*>*::Impl();

Book* myBook1, myBook2 = new qualified1 Book::Impl();

This has the advantage that qualifiers can then be dynamically inserted into and

deleted from the qualifier list, e.g.

qualified1.insert(secured); // inserted at the list end

qualified1.insertAtPos(synchronised, 0) // inserted at front

The List methods allow applications to define a precise order for the qual-

ifiers in a list. This is important because the call-in brackets provided in the

qualifiers of such a list are executed from left to right, while the call-out brack-

ets are executed from right to left. Changes in the ordering can cause significant

behavioural changes.

Since entries in a qualifier and qualifiers in a list can both be modified, it is

important that changes take place in a synchronised manner. This is achieved by

bracketing the list using the synchronisation mechanisms described in chapter

15, section 4.

Brackets can be used to qualify local objects in a module, but also to quali-

fy ModelOS modules. In the latter case (file) lists of qualifier modules must be

used and the lists themselves must be file modules, e.g.

List<Qualifier**>** qualified2 =

 new List<Qualifier**>**::Impl();

PayrollFile** myPayroll = new qualified2 PayrollFile::Impl();

8.2 Qualifying Target Objects Statically

This subsection is based substantially on [23], and the reader is encouraged to

read the entire paper, since some of its detailed content has not been covered

here.

Like the attribute types described in the previous chapter, qualifying types

can be tightly bound to, i.e. composed statically into, the objects which they

qualify.

The syntax for this follows the same (adjectival) pattern as that used to bind

attributes into an object. This syntax can be defined in EBNF as follows:

derivationClause = ("extends:" | "includes:") inheritedItems.

inheritedItems = { [qualifyingList] simpleItem ";"

 | qualifyingList compositeItem ";" }.

qualifyingList = "{" inheritedItems "}".

compositeItem = "(" inheritedItems ")".

Chapter 10 QUALIFYING TYPES 81

The basic bracketing rule is that the public methods of inheritedItems (wheth-

er simple or composite) are qualified by the bracket methods of their

qualifyingList (if any), but public methods added by other items in the same

qualifyingList are not. When a client invokes a method of a qualified item, the

appropriate bracket method (if any) of each item in its qualifyingList is

scheduled in turn (from left to right) at the point where the predecessor executes

a body statement.

Thus a reader-writer synchronised person can be defined as follows:

type SynchronisedPerson {

extends:

{RWsync;} Person;

}

Multiple qualification is achieved by extending the adjectival list.

type SecuredSynchronisedPerson {

extends:

{Monitoring; RWsync;} Person;

}

Attributes and qualifiers can be included in the same adjectival list:

type StudyingSynchronisedPerson {

extends:

{RWsync; Studying;} Person;

}

Here the bracket methods are applied to methods of the target type (i.e. RWsync

qualifies Person) but not to the methods of its attributes (i.e. in this example not

to the instance methods of Studying).

Adverbial qualification (i.e. qualification of qualifiers) is possible, because

items in a qualifying list can themselves have a qualifying list, e.g.

type SynchronisedlyStudyingPerson {

 extends: {{RWsync;} Studying;} Person;

}

Here the methods of Studying are synchronised, but not those of Person.

Assuming that Employed is another for Person attribute type, the meth-

ods of Studying, Employed and Person, are all synchronised by RWsync in this

example:

type SynchronisedStudyingEmployedPerson {

 extends:

 {RWsync;} ({Studying; Employed;} Person;);

Chapter 10 QUALIFYING TYPES 82

}

Here Studying, Employed and Person are grouped to define a compositeItem

qualified by RWsync. To synchronise the methods of Studying and Employed

(but not those of Person) with the same qualifier, i.e. using the same synchro-

nising variables, the following definition can be used:

type SynchronisedlyStudyingEmployedPerson {

 extends:

 {{RWsync;}(Studying; Employed;);} Person; }

while in the next example each attribute (but not Person) is synchronised, but

using separate synchronisation variables:

type SyncStudyingSyncEmployedPerson {

 extends:

 {{RWsync rws1;} Studying; {RWsync rws2;} Employed;} Person;

}

 83

 Chapter 11

Co-Types

The only kinds of methods which can appear in a type definition and its imple-

mentations are instance methods, callout methods and bracket methods, together

with a single constructor per implementation. Other OO languages often support

additional kinds of methods, e.g. binary methods, static methods, and also mul-

tiple constructors for a type.

To provide equivalent functionality in a clean and simple manner, Timor

has introduced a new concept, called co-types
44

. A more detailed description of

this concept and of related ideas, including a more substantial motivation for

introducing co-types, appears in [17, 18]. The identifier of a co-type is the iden-

tifier of its base (partner) type followed by the ampersand symbol & and a co-

type suffix. A base type can thus have different co-types, which each has a dif-

ferent co-type suffix.

1 The Basic Structure of a Co-Type

A co-type can expand its basic type by providing the equivalent of OO static

methods in its instance section. It can also include several additional sections,

including the following. A section introduced by the keyword binary is used to

add binary methods to the type. The further section, introduced by the keyword

maker, allows the programmer more flexibility by adding new makers, i.e. im-

plementation independent constructors which build upon the implementation

dependent constructors introduced in section 4 of chapter 3. Binary methods and

makers are in most respects normal instance methods. Only co-types can have

these sections. The order of sections is not important, and multiple sections of

the same kind can appear in a type definition.

A type can have zero or more co-types. Here is an example of a co-type

44

 The PhD of my former student Prof. Dr. Axel Schmolitzky played a significant role in

the formulation of the idea of co-types, see [3].

Chapter 11 CO-TYPES 84

declaration, Person&s, which is a co-type for the type Person with a co-type

suffix s. This suffix is typically used for makers and binary sections.

type Person&s expands Person {

instance: /* This section contains the equivalent

 of static methods for Person */

 enq Int instanceCount();

 /* returns the number of created instances

 of the type Person */

 op void changeName(Person*** p; String newName)

 throws NullPtr;

 // changes name of an existing Person (e.g. after marriage)

maker:

 op Person init(String name, address; Date dateOfBirth)

 throws InvalidParams;

 /* carries out consistency checks and where appropriate

 creates a Person value, initialises name, address and

 date of birth and increments the count of instances */

binary:

 enq Boolean equal(Person*** p1, p2) throws NullPtr;

 // compares two Person instances

 enq Person*** older(Person*** p1, p2) throws NullPtr;

 /* returns the older of two Person instances; if they are

 the same age to the day then p1 is returned */

}

2 The Maker Section

Makers are methods which provide a substitute for more conventional construc-

tors. In contrast with the constructors which appear in implementations (with

parameters oriented to an individual implementation of a type
45

, see chapter 3

section 4), makers have application-oriented parameters which can, for example,

initialise various application related variables.

A maker might initialise an instance of the type "from scratch" (as in the

example) or it might for example create an instance of the type by, say, merging

information from other instances of the type (possibly with different implemen-

tations), or simply convert from one implementation to another.

To carry out its purpose, a maker typically selects an implementation of the

45

 For example a constructor for a particular implementation of a list might provide a max-

imum length parameter and use this to initialise an array, while a constructor for a

linked list implementation does not require such a parameter.

Chapter 11 CO-TYPES 85

type (with or without parametric advice from the user), calls its constructor and

then initialises some values, e.g. by invoking instance methods of the new in-

stance or by using information from other objects passed as parameters.

When makers call constructors they can choose a suitable implementation

and the user of the type (and co-type) does not have to be concerned about the

definitions of constructors, which may vary from implementation to implemen-

tation. The result type of a maker is always a result of the expanded type. Typi-

cally they return a value of their base type, since it is easy for the user to convert

this into an object reference or a module capability (using the appropriate key-

word new or create). However, this is only a convention.

If makers are defined for a type, then these are the only methods which can

invoke constructors of the implementations of the expanded type. If a type has

no makers in any of its co-types the basic constructors for its implementations

can be invoked without restriction. Thus the (optional) existence of makers al-

ways implies control of a type. We therefore refer to a co-type which contains

makers as a controlling co-type.

If a maker exists for an expanded type which is defined to contain "con-

stants"
46

, then only the makers and other methods of the co-type (e.g. co-type

instance methods designed to allow controlled changes) can invoke the op

method for setting the constant. However, a controlling co-type is not restricted

to doing this only once, which means that it can for example make controlled

changes to "constants" after the initialisation phase, e.g. to correct errors, or to

change a surname after marriage. (In this sense Timor does not support genuine

constants, except where the type has no controlling co-type.)

3 The Instance Section

Instance methods follow the same rules in co-types as in other types. In the con-

text of a co-type they usually access instance data structures which typically

serve a function similar to class data in conventional object oriented languages.

In this case they will typically not have parameters of the expanded type.

However instance methods can be used to provide other useful co-type

functions, in which case they may have a parameter of the expanded type. For

example a method which allows a final abstract value of the expanded type (e.g.

a surname of a newly married person), which has to be modified for a particular

instance (see the previous subsection on makers), needs an actual parameter in-

dicating to which instance the new value applies.

46

 see chapter 5 sections 4 and 5.

Chapter 11 CO-TYPES 86

4 The Binary Section

This section provides the application with the possibility of declaring binary

methods, without creating a number of problems that can occur in normal OO

languages [26]. From the Timor standpoint a binary method typically receives

parameters of the expanded type and uses their instance methods to carry out the

binary task, e.g. to compare the instances. Usually they return a boolean result.

They may not return a result of the expanded type; that can be achieved in the

maker section.

A binary method must have at least two parameters of the expanded type,

or a compile time error occurs. It is recommended that these be declared as han-

dles for the expanded type, thus ensuring that separate binary methods do not

have to be written for accessing instances of the type which have different (or

even mixed) modes. Although it will generally not be necessary, an implementa-

tion of a binary method (like any other method) can if necessary use a cast

statement to determine the actual modes of the parameters passed to it.

5 A Simple Co-type Implementation

A co-type, like any other type, can have multiple implementations. Here is a

simple example of an implementation.

impl Person&s::Impl {

state:

 Int count = 0;

instance:

 enq Int instanceCount() {return count;}

 op void changeName(Person*** p; String newName)

 throws NullPtr {

 if (p == null) throw new NullPtr ();

 p.name = newName;

 }

maker:

 op Person init(String name, address; Date dateOfBirth)

 throws InvalidParams {

 if (dateOfBirth.year < 1900) throw new InvalidParams();

 count++;

 Person tempP = Person::Impl();

 tempP.name = name;

 tempP.address = address;

 tempP.dateOfBirth = dateOfBirth;

 tempP.spouse = null;

Chapter 11 CO-TYPES 87

 return tempP;

}

binary:

 enq Boolean equal(Person*** p1, p2) throws NullPtr {

 if (p1 == null || p2 == null) throw new NullPtr();

 if (p1.name == p2.name &&

 p1.dateOfBirth == p2.dateOfBirth)

 return true;

 else return false;

 }

 enq Person*** older(Person*** p1, p2) throws NullPtr {

 if (p1 == null || p2 == null) throw new NullPtr();

 if (p1.dateOfBirth.year < p2.dateOfBirth.year)

 return p1;

 if ((p1.dateOfBirth.year == p2.dateOfBirth.year) &&

 (p1.dateOfBirth.month < p2.dateOfBirth.month))

 return p1;

 if ((p1.dateOfBirth.year == p2.dateOfBirth.year) &&

 (p1.dateOfBirth.month == p2.dateOfBirth.month) &&

 (p1.dateOfBirth.day <= p2.dateOfBirth.day))

 return p1;

 return p2;

 }

}

6 Accessing Parameters at the Implementation Level

The co-type methods above are able to work independently of the implementa-

tions of their parameters, which might be different implementations of the same

type. This is possible because the methods access their parameters using the

public methods of their parameter types. However, this may not always be ap-

propriate, for example when files (especially large files) have to be converted

from one format to another.

For example a maker for video files of a type MpgFilm might be designed

to convert films from one mpg format (i.e. implementation) to another, e.g. from

mpeg-2 format to mpeg-4 format. To do this efficiently the maker needs access

to the implementation of its parameter. One way of achieving this would be to

define a maker as follows:

type MpgFilm&s expands MpgFilm {

maker:

 enq MpgFilm** convertToMpeg4(MpgFilm::Mpeg2** mpg2)

Chapter 11 CO-TYPES 88

 throws InvalidParams;

}

To attempt such a conversion on the basis of semantic routines such as play, fast

forward, etc. would obviously be unreasonable.

The compiler cannot check at compile time whether the actual parameter

has the specified implementation, but it can insert code to check this at run-time

and if necessary raise a standard run-time error.

There is no problem in having further makers which also convert other

formats to mpeg-4, e.g.

enq MpgFilm** convertToMpeg4(MpgFilm::Mpeg1** mpg1)

 throws InvalidParams;

Where multiple methods are defined with the same name and the same parame-

ter types but with varying implementations, the compiler must generate run-time

code to distinguish between their parameters and cause the appropriate method

to be invoked. If an appropriate method is not available, a standard run-time er-

ror is generated, except in the case where a method is also available which simp-

ly defines the parameters in question by their type (without naming an imple-

mentation). In this case this method is chosen as a default. This technique is not

confined to makers; it can be particularly useful for example in binary methods

to compare parameters with the same type but different implementations.

Sometimes conversion programs are needed to produce a file of a quite dif-

ferent type, which from the viewpoint of type definitions is barely related. In the

video environment conversion from avi format to mpg format (and vice versa)

would be a case in point. To cite another example, in conventional systems

many kinds of files can be converted to PDF format. This is a further case where

restricted access via semantic routines would be a futile exercise.

The definition of parameters in terms of their implementations can also be

applied in such cases, but the use of the technique is restricted to co-types (mak-

ers for conversions and binary methods for comparisons), e.g.

type Pdf&s {

maker:

 enq Pdf** msWord2010convert(Word::Word2010** word2010)

 throws InvalidParams;

}

The definition of parameters in terms of implementations is a deliberate vi-

olation of the information hiding principle, and is only permitted in co-type

Chapter 11 CO-TYPES 89

makers and binary methods
47

. (In ModelOS implementations can use free capa-

bility parameters, discussed in [6]
48

, to access the content of a file.)

7 Derivation and Adjustment of Co-Types

Just as normal types (e.g. Person) can have subtypes (e.g. Student, Tutor,

etc.) so also can co-types, e.g. which add new methods to those defined in the

original co-type. Since co-types are structurally just types like other types (ex-

cept that they can have special sections for methods such as makers and binary

methods), the rules for creating and using subtypes are the same as those for

normal types.

If a type which has a co-type also has subtypes, an adjustment hierarchy

can be (partially) automatically created which provides a parallel hierarchy for

their co-types, as is illustrated in Figure 11.1.

An adjustment hierarchy does not consist of subtypes. However, it has a

number of advantages, including the following
49

.

1) Input parameters and return types in the corresponding methods of an ad-

justment hierarchy can be safely changed covariantly.

2) An adjustment hierarchy can help the co-type designer to ensure that all

cases are covered, because it provides a systematic approach which allows

methods to be predefined, and these are available by definition even for

subtypes that are added later in the subtype hierarchy. This is particularly

helpful when co-types are designed as components which can be added to

different systems.

3) For the application programmer the existence of an adjustment hierarchy

can guarantee that where certain methods exist in a co-type for an expanded

47

 In his PhD thesis Schmolitzky restricted the use of this technique to parameters which,

in Timor terms, have different implementations of the type being expanded in the co-

type.
48

 see Chapter 18 section 8, Chapter 19 section 13.5 and chapter 24, section 5 of [6].
49

 The following lists of advantages and differences and differences originally appeared in

[18], which has also served as a basis for the text of the sections 7 to 14 of this chapter.

Student&s Tutor&s

Person&s Person

Student Tutor

A Subtype Hierarchy An Adjustment Hierarchy

Figure 11.1: Parallel Hierarchies for Subtypes and their Co-Types

Chapter 11 CO-TYPES 90

type, similar methods will exist in co-types for all the subtypes of the ex-

panded type.

4) Implementations of co-types can be re-used in implementations of other co-

types in the adjustment hierarchy.

Here are some of the differences between a subtype hierarchy and an adjustment

hierarchy, as illustrated from Figure 11.1:

• Whereas Student and Tutor are subtypes of Person, the adjusted types

Student&s and Tutor&s are not subtypes of Person&s. Thus an instance

of type Student can be assigned to a variable of type Person, but an in-

stance of type Student&s cannot be assigned to a variable of type

Person&s.

• A co-type functions only for its corresponding expanded type. Thus

Student&s cannot act as a co-type for Person or Tutor.

• Whereas a subtype hierarchy is open-ended and is extended explicitly, an

adjustment hierarchy has a parallel set of nodes corresponding to those in

the subtype hierarchy, starting at the node where a new co-type is explicitly

defined.

• Because co-types in an adjustment hierarchy are not subtypes of their ad-

justing ancestors, methods in a higher level co-type need not appear in cor-

responding lower level co-types.

• It is possible for example to define an additional co-type Student&s2 for

Student, and co-types derived by adjustment from Student&s2 will not

apply to Person or Tutor or their subtypes, but only to subtypes of

Student.

8 Syntactic Features Limited to Co-Types in an Adjustment Hierarchy

Two additions are available to enhance the functionality of adjustment hierar-

chies.

i) Where the system designers decide that methods of a co-type section (e.g.

instance, binary, maker) must appear in each successor co-type in the

hierarchy, the name of the section is preceded by the keyword predefines.

However, it is a matter of the system designer's judgement to determine

which methods are predefined in this way, and it is possible to have section

names which are not preceded by this keyword.

ii) The keyword TheType is used to indicate specific type names where covar-

iance occurs. The modes of the parameters are indicated using the normal

asterisk notations. Not all parameters need be defined as covariant.

It is an orthogonal issue to determine which methods (if any) should be declared

Chapter 11 CO-TYPES 91

to be protected (see chapter 3 section 8).

9 Covariant Makers

Although abstract types do not have makers (because an abstract type cannot be

instantiated) it is possible to have predefined maker sections (but not normal

maker sections) in a co-type for an abstract type. The purpose of these is to sig-

nify that certain makers must appear in the co-types for concrete subtypes of the

abstract type.

10 Covariant Instance Methods

The instance methods of a co-type can have parameters of the expanded type, in

which case these can be declared using TheType. However if the instance meth-

ods have an equivalent role to that of class methods in conventional OO they

will not normally have parameters of the expanded type. But this does not pre-

vent them from being defined in a predefined instance section (even for an

abstract type).

11 Modifying Co-Type Definitions

The above descriptions allow a compiler automatically to define members of a

co-type adjustment hierarchy based on the co-type for the base type. However, it

may sometimes be appropriate to modify such automatically defined co-types.

To indicate that such modifications should be made the keyword adjusts

(analogous to the keywords extends or includes for normal types) can be

used.

In this case methods which need to be redefined appear in a redefines

section. If the signature does not change the redefined methods replace the cor-

responding methods from the adjusting type (cf. overriding). Changes which

only involve the meaning of TheType require no redefinition.

New methods can be added in the usual way. If a new method has the same

identifier as that of a predefined method but with a changed signature (other

than changes involving only the meaning of TheType) then this method is con-

sidered to be a new method (analogous to overloading). In this case both the

predefined method and the new method are present in the adjusted type.

Where signatures of predefined methods need not be changed (except for

covariant adjustments), neither the relevant section nor its methods need (but

they can) be included in the redefinition of the co-type.

12 Merging Co-Type Methods which Result from Diamond Inheritance

This issue primarily concerns diamond inheritance resulting from an abstract

supertype, such as arises in the Timor Collection Library and is handled in a

Chapter 11 CO-TYPES 92

similar way to the merging of methods in a subtyping hierarchy.

Type Adjustment Rule 1: If in an adjusted type multiple methods which re-

sult from a common adjusting predecessor and which have the same signature

(in this context including parameters defined using the keyword TheType), they

are treated as a single method (unless they have return types which differ from

each other, in which case a compile time error arises). According to this defini-

tion, makers, binary methods and instance methods can all be merged.

Type Adjustment Rule 2: If the definitions of such methods differ (i.e. if one

or more of them has been redefined differently from the definition in their clos-

est common predecessor), they must also be listed in a redefines clause in the

type being defined.

Rule 2 in effect requires that conflicting definitions are clarified. Where a

definition in one of the ancestors can be used in the new type, this can be sig-

nalled by the use of the keyword from followed by the name of the appropriate

co-type.

13 Merging Multiply Adjusted Co-Types for Parts

In this case the principles basically follow mutatis mutandis those used in defin-

ing the types themselves (see [11]). In the co-type the keyword adjusts is used

instead of extends or includes, and in the case of repeated inheritance multi-

ple co-type methods for a repeated expanded type are not required.

14 Implementing Adjustment Hierarchies

The rules for implementing adjustment hierarchies follow a similar pattern to

those for implementing types. A fundamental difference arises as a result of co-

variant adjustment of parameters for re-use variables defined using the keyword

TheType (see chapter 8). The solution is to indicate that a re-use variable which

requires covariant adjustment is indicated by a double hat symbol. For example

if a re-use variable based on the TCL implementation of the co-type

Collection&s is used in the implementation of a Bag co-type Bag&s, in order

that the covariant adjustment occurs it is implemented as follows:

impl Bag&s::Impl {

state:

^^Collection&s collections = Collection&s::Impl();

 /* an adjusted re-use variable is indicated by a double

 hat symbol */

}

In this example each occurrence of TheType in Collection&s::Impl is

considered to mean Bag.

Chapter 11 CO-TYPES 93

The keyword predefines is not normally used in implementations, be-

cause the compiler does not automatically produce adjusted implementations of

successor co-types. However, it can appear in implementations of co-types in

the context of makers, when a co-type is being defined for an abstract base type

(which of course has no makers), but it is anticipated that the co-type implemen-

tation will be used as a re-use variable in the implementations of concrete sub-

types. An example of this appears in chapter 13 section 3.2.1 in the implementa-

tion of Collection&s.

15 A Further Example of Co-Types

The basic idea behind co-types is that they can provide a standard way of adding

ancillary methods to a basic type (i.e. the expanded type) without directly affect-

ing the definition of the expanded type itself. This approach provides a modular

framework which allows new components to be defined (and have multiple im-

plementations) and easily added to application systems. Makers and binary

methods are obvious examples where this approach is useful, but these are not

the only examples.

15.1 Co-types for Standard Input-Output Operations

Here is a further example which illustrates the versatility of this idea and at the

same time illustrates how input-output methods can be added to types in a mod-

ular way. We begin by defining a view StandardIO, as follows:

view StandardIO expands TheType {

 predefines maker:

 op TheType fromString(String s);

 predefines inout:

 enq String toString(TheType t);

 ...

}

Notes:

1. The use of the keyword expands indicates that this view can only be ex-

tended by or included in a co-type.

2. In co-types the expands keyword is normally followed by the name of the

specific type being expanded, but since in the context of a view which is

designed for use in any co-type a specific type cannot be nominated, the

keyword TheType is used instead.

3. An implementation can be defined for a co-type view, but of course this can

only be fully compiled in a specific co-type context.

4. The keyword inout, like maker, etc. is the name of a co-type section.

Chapter 11 CO-TYPES 94

The view StandardIO has an implementation which can, but need not, be re-

used in implementations of co-types which inherit its methods:

impl StandardIO::Impl {

 predefines maker:

 op TheType fromString(String s) {

 if (s == null) throw new NullEx();

 return null;

 }

 predefines inout:

 enq String toString(TheType t) {

 if (t == null) throw new NullEx();

 return "undefined";

 }

}

Here is an example of a co-type Person&io, which is an input-output co-type

for the type Person:

type Person&io expands Person {

extends: StandardIO;

}

An implementation might be coded along the following lines:

impl Person&io::Impl expands Person {

 predefines maker:

 op TheType fromString(String s) {

 if (s == null) throw new NullEx();

 Person p;

 p.name = ... // select name from the input string s

 p.address = ... // select address from s

 String sdate = ... // select substring with date from s

 p.dob = date&io.fromString(sdate);

 return p;

 }

 predefines inout:

 enq String toString(TheType t) {

 if (t == null) throw new NullEx();

 return "Name is "+ t.name + "Address is " + t.address +

 "Date of Birth is " + date&io.toString(t.dob);

 }

}

Chapter 11 CO-TYPES 95

This approach differs substantially from the Java approach, which adds

such methods as toString by making them methods of the general Java super-

type Object. The Timor general supertype Handle, by contrast, has no meth-

ods. Instead Timor opts for the more modular, more flexible and more extensible

approach illustrated.

As a further illustration of this flexibility we define an abstract type Shape

and then expand this in a co-type Shape&io.

abstract type Shape {

 instance:

 Int colour; // all shapes have a colour

 Int coordinate1, coordinate2;

 // all shapes have at least two coordinates

}

Now we declare a co-type for this. The keyword TheType refers to the expanded

type (i.e. Shape), and can be covariantly adjusted in co-types for subtypes of

Shape.

type Shape&io expands Shape {

extends: StandardIO;

predefines inout:

 enq void draw(TheType s; Canvas c);

 // draws a single shape on a canvas

 enq void drawAll(Collection<TheType>*** ct; Canvas c);

 // draws a collection of shapes on a canvas

}

The draw and drawAll are methods for drawing instances of TheType which

are inherited in concrete subtypes; they cannot actually draw a Shape object,

because Shape is an abstract type and has no objects in its own right. The aim is

that methods in the appropriate subtype can draw concrete examples of Shape,

such as rectangles and circles. It is also useful to be able to draw collections con-

taining different shapes which together make up a drawing.

Why should we want to define I/O methods in co-types? The answer lies in

the modularity which can be gained and the flexibility which it gives. For exam-

ple with the simple draw method defined above, we can design this method (for

subtypes of Shape) in an endless number of ways. For different applications we

might want to provide a simple shape, or we could write the name of the shape

(or a user-defined name indicating what the shape represents in a particular pic-

ture) inside the shape, or over it or underneath it, etc. By detaching the drawing

methods from the definition of the base type itself, we gain considerable flexi-

Chapter 11 CO-TYPES 96

bility, because we can, if we choose, have multiple co-types which provide dif-

ferent ways of representing the same shape.

It should be recalled in this respect that different co-types for the same type

can appear and be concurrently invoked in a single system or application, and

that these need not all contain similar methods. A co-type containing only I/O

methods, for example, is quite normal. It need not also contain binary methods,

etc. The latter are best held in a separate co-type.

15.2 Adjusting Input-Output Methods in Co-types

We now define two subtypes for the type Shape:

type Circle{

 extends: Shape;

 instance:

 Int radius;

}

type Rectangle{

 extends: Shape;

 instance:

 Int length, width;

}

According to the co-type adjustment rules, a co-type is automatically generated

for each subtype, and this can then be manually modified to add new methods

and to provide appropriate implementations of the co-type methods. Assuming

that the co-type Shape&io extends StandardIO, the co-type Circle&io is au-

tomatically generated as follows:

type Circle&io expands Circle {

 adjusts: Shape&io;

 // The following maker is automatically adjusted

 predefines maker:

 op TheType fromString(String s);

predefines inout:

 // The following inout methods are automatically adjusted

 enq String toString(TheType t);

 enq void draw(TheType s; Canvas c);

 // draws a single circle on a canvas

 enq void drawAll(Collection<TheType>*** ct; Canvas c);

 // draws a collection of circles on a canvas

}

An analogous co-type for rectangles, called Rectangle&io, also exists automat-

Chapter 11 CO-TYPES 97

ically and methods can be correspondingly added. Implementations of the types

and their co-types are not shown, as these would illustrate nothing new.

15.3 Using Inout Methods

The I/O methods in the above example are based on similar methods described

in Bracha's tutorial on generics in Java [27], though there the draw method is

defined as an instance method in each shape, and a class Canvas contains a fur-

ther draw method and a drawAll method which both invoke the draw methods

in the individual shapes. Bracha uses the example to argue for the use of upper-

bounded wildcards, indicating that it makes sense to have a list of shapes which

together form a drawing and can be passed to drawAll.

In the following example a list of shapes shapeList is assumed to exist

which contains circles and rectangles, and this is passed to the drawAll method

of a Shape&io co-type:

shape&io.drawAll(shapeList, c);

The issue which we now address is how drawAll can be implemented. The

question arises because the draw routine is not a normal instance method de-

fined in the expanded types but appears instead in their co-types. Here is a pos-

sible implementation:

enq void drawAll(Collection<TheType>*** ct; Canvas c){

 /* draws a collection of shapes on a canvas.

 Since this is code in an implementation of

 Shape&io, TheType here is Shape */

 for (TheType t in ct) {

 cast (t) as {

 (Rectangle rect) {rectangle&io.draw(rect, c);}

 (Circle circl) {circle&io.draw(circl, c);}

 }

 }

}

In this example rectangle&io and circle&io are variables to which instances

of the co-types Rectangle&io and Circle&io respectively have been assigned.

This follows the Timor practice that for each co-type included in a program a

co-type variable normally exists with an identifier which is the same as the co-

type identifier, except that it begins with a small letter.

While the above solution works, it is not particularly attractive, because the

code of the cast statement has to be modified whenever a new shape is intro-

duced or an existing shape is deleted, which is not very modular.

Chapter 11 CO-TYPES 98

Here is another approach. The method draw (but not drawAll) is placed

not in the co-type but as an instance method in each shape type/subtype. For ex-

ample the method could be defined in Shape (as distinct from Shape&io) as:

enq void draw(Canvas c);

 // draws a single shape on a canvas

This would be inherited in all subtypes, and an implementer would have to pro-

vide code for the corresponding shape. It would then be possible to implement

drawAll in Shape&io as follows:

enq void drawAll(Collection<TheType>*** ct, Canvas c){

 for (TheType t in ct) t.draw(c);

 }

This code also works (thanks to dynamic method binding), but like the previous

solution, it also has a drawback. In this case the method which actually draws a

shape must be included in the description of the shape subtype itself, which de-

feats one of the aims of including inout routines in co-types, namely that mul-

tiple co-types can co-exist and can be used flexibly to define different ways of

representing each shape.

We now pursue an approach which combines the advantages and eliminates

the disadvantages of both solutions above. It is based on the simple idea that

what one would like to achieve is something like the second solution, but instead

of invoking a method of the expanded type a method of its co-type is invoked.

To achieve this we extend the syntax of Timor as follows: if t is a variable

(or pseudo-variable) of some type T, then the pseudo-variable t&io (or of course

a pseudo variable t&s where we are concerned with a co-type T&s, etc.) is a

pseudonym for the co-type variable corresponding to the actual type of t. Hence

if the draw method is defined as a predefining method in the inout section of

Shape&io, then we can modify the second solution above to read:

enq void drawAll(Collection<TheType>*** ct, Canvas c){

 for (TheType t in ct) t&io.draw(c);

}

Notice that in this example we might be executing drawAll as a method in

Shape&io, where the expanded type (i.e. TheType) is Shape, such that ct is a

collection of shapes of various sorts. Since Shape itself is an abstract type, the

actual shapes in ct must be concrete subtypes of Shape, e.g. rectangles and cir-

cles. Hence although t is formally declared to be of type TheType, i.e. in this

case Shape, its actual type might for example be Circle or Rectangle. Hence

an invocation of the draw method on t&io refers to the co-type variable of the

actual type, e.g. circle&io.

Chapter 11 CO-TYPES 99

This technique involves dynamic binding of co-type methods. It relies on

the following premises:

• The methods which are invoked must be predefined methods in the adjusted

co-types.

• For each subtype of the type in question (here Shape) there is a correspond-

ing co-type, and these form an adjustment hierarchy of co-types which are

automatically named with the help of the & character. (The suffix following

the & symbol indicates which co-type adjustment hierarchy is involved.

This must be the family of the co-type currently being defined.)

• The name of the method invoked using the pseudo-variable is the name of a

predefined method in the co-type which is currently being compiled.

All of this can be checked by the compiler simply from the information which it

has about the co-type (implementation) currently being compiled.

16 Access to Co-Types and other Components

When a module (in the Timor and ModelOS sense) and all its components have

been completely compiled and integrated into a single unit, and the module is

therefore ready to be used, the supporting software responsible for this (some-

what akin to a linker but with different duties) must ensure that all the co-types

(and adjusted co-types) which can be invoked are also available (automatically)

in the module. We do not define here how this happens but it is important that

the compiler leaves sufficient information available in "linking" and software

library files to make this possible. This involves locating those co-types which

are actually used in the module; the software can recognise this from the names

of co-types, since these are recognisable by their suffixes which follow the

names of the base types. If a co-type or adjusted co-type or required implemen-

tation thereof does not exist for the system in question (e.g. in a library of co-

types), then the software must draw this to the attention of the programmer re-

sponsible for the module.

Since one of the basic aims of Timor (and ModelOS) is to have standard li-

braries of commonly used components at all levels, it should frequently be the

case that standard components (even for "small" objects such as Person, Date,

etc. and for their commonly used co-types) already exist for programmers. Each

automatically produced actualised co-type automatically has a variable by which

its methods can be invoked. The name of this variable is the name of the actual-

ised type followed by the name of the type which it expands followed the co-

type suffix; for example for type variables actualised to SortedSet<Person*>

there could be automatic co-type variables such as personSortedSet&s,

personSortedSet&io, etc, depending whether these are actually used in the

Chapter 11 CO-TYPES 100

module.

 101

 Chapter 12

Generic Types and Implementations

Timor provides two generic features for use in programs. The first, which to

some extent resembles genericity in other OO languages, allows a generic type

name to represent actual type names in type definitions and implementations.

This is especially useful for defining the TCL, since it allows the elements in a

collection to be defined generically but then instantiated as actual collections

types, e.g. as a set of the type Person, written Set<Person>
50
. The identifiers

of generic types are distinguished from other identifiers in that the first two

characters must be capital letters and all further letters must also be capitals,

though other symbols are permitted. The definition of a set of generically de-

fined elements might be Set<ELEM>.

The second generic form allows parameters for generic type constructors to

be defined as generic functions. This second form of genericity is introduced in

chapter 14.

In the following it is assumed that the type Person is defined as a "record"

based on abstract variables (see chapter 5), as follows:

type Person {

instance:

 String name, address, dob;

 Int passportNum;

 Int intDialCode, areaDialCode, telephoneNum;

}

1 Generic Templates

Timor supports genericity in the sense that a generic definition provides a pat-

tern for a number of types or their implementations. Such patterns are called

50

 Detailed generic type definitions and their implementations have been included as ex-

amples in chapter 13.

Chapter 12 GENERIC TYPES AND IMPLEMENTATIONS 102

templates. In order to produce actual types and implementations, a template

must be actualised
51

. A template itself plays no role at run-time, in contrast with

the entities actualised from it.

A template consists of a template header and a template body. It has a tem-

plate identifier and it may use both normal and generic identifiers in its defini-

tion. The template identifier is not a generic identifier; it must be unique in the

same sense that type and implementation identifiers are unique.

A template header consists of the keyword template followed by a set of

template parameters bracketed by the bracketing pair < and >. A template body

is a normal type or implementation definition which includes the template iden-

tifier and may contain generic identifiers.

2 Type Templates

Here is an example of a template for producing types, known as a type template:

template <ELEM>

// ELEM is a generic identifier for a type parameter

abstract type Collection {

/* Collection is the template type identifier. This example

 is a shortened version of the abstract supertype of

 collections in the Timor Collection Library (TCL) */

instance:

enq Int size(); // returns current number of elements

op void clear(); // removes all elements in this collection

enq Boolean contains(ELEM e) throws NullEx;

// returns true if e is an element in this collection

op void insert(ELEM e) throws DuplEx, NullEx;

/* a general method to insert elements; a DuplEx exception or

 a NullEx exception may be thrown by appropriate subtypes */

op void remove(ELEM e) throws NullEx, NotFoundEx;

/* removes e (at most once) if this is contained in the

 collection */

}

In this example the template identifier is Collection and the single template

parameter is <ELEM>, where ELEM is a generic identifier and type indicates what

kind of template it is. The keyword abstract indicates that in this case the type

defined in the following template is an abstract type.

51

 The term "instantiate" is used for creating instances of types, whereas the term "actual-

ise" indicates the creation of an actual type from a type template.

Chapter 12 GENERIC TYPES AND IMPLEMENTATIONS 103

The template body consists of the remaining lines of the example.

3 Implementation Templates

Like normal Timor types, each type template can have more than one implemen-

tation. These are defined in implementation templates, which also consist for-

mally of a template header followed by a template body. The identifier of an

implementation template is the name of the implementation. Here is an example:

template <ELEM>

impl List::Impl{ /* List::Impl is the template id; this

 is followed by the code of the generic implementation */

}

However, as the template header of an implementation cannot differ from that of

its generic type, this can be abbreviated simply to the keyword template, as

follows:

template impl List::Impl{

...

// code of the implementation

}

4 Actualising Templates

Actualising a generic template consists of substituting an actual type name for

each generic parameter which appears in the template header. A variable of an

actual type can be declared as follows.

List<Person*> personList;

// a variable for a List of Person references

Instances of generic types are initialised by invoking a constructor of one of the

implementations of the type. Here is an example showing how a constructor for

a List<Person*> might be called:

List<Person*>::Impl();

5 Deriving Templates by Single Inheritance

5.1 Deriving Templates by Extension

A type template can be derived by extension from some other type template,

provided that it does not add any further generic type parameters to those al-

ready present in the ancestor. Instances which are actualised from a subtype

template can only be assigned to variables of a supertype if

a) no additional type parameters are introduced at the subtype level,

b) the same type parameter arguments are used to actualise both the variable

Chapter 12 GENERIC TYPES AND IMPLEMENTATIONS 104

and the instance.

These rules do not preclude defining by inclusion a derived type which adds fur-

ther template parameters, since such derived types cannot be used polymorphi-

cally.

Here is an example of a subtype template:

template type Bag {

/* without a complete template header as this is inherited

 unchanged from the template of the supertype Collection */

extends: Collection;

redefines:

op void insert(ELEM e) throws NullEx;

 // accepts duplicates, i.e. always inserts e

op void replace(ELEM oldE, ELEM newE)

 throws NullEx, NotFoundEx;

 /* removes at most one element corresponding to oldE and

 if an oldE is removed, newE is inserted. */

}

The behavioural subtyping rules above are provided in order to guarantee type

security at compile time. The following example, which attempts to add an addi-

tional generic type parameter, illustrates the need for the above rules:

template <ELEM, ELEM2>

type DoubleBag {

 // intended to allow a bag to contain two kinds of elements

extends:

 Bag;

instance: // a new instance method

 op void insert(ELEM2 differentE) throws NullEx;

 // accepts duplicates, i.e. always inserts differentE

}

If the above definition were valid then according to the normal method over-

loading rules the new insert method would overload the insert method in

Bag. Consequently it would be possible to insert items both of type ELEM and of

type ELEM2 into a DoubleBag, provided that this is not accessed via a Bag varia-

ble.

Let us suppose that a programmer correctly does this, e.g.

DoubleBag<Person, Animal> myDoubleBag =

 DoubleBag<Person, Animal>.init();

... // add some Person and some Animal elements to DoubleBag

Chapter 12 GENERIC TYPES AND IMPLEMENTATIONS 105

but then assigns the object to a Bag variable:

Bag<Person> personBag = myDoubleBag;

Then he assigns arbitrary elements via the Bag variable to a variable of the type

ELEM of Bag:

for (x in personBag) {Person p = x; ...}

 // Error: an element of type Animal might be assigned

 // to a Person variable.

This is an error which would not be detectable at compile time without the

above rules.

5.2 Deriving Templates by Inclusion

These rules do not preclude defining by inclusion a derived type which adds fur-

ther template parameters, i.e. the following definition is valid:

template <ELEM, ELEM2>

type DoubleBag {

 // intended to allow a bag to contain two kinds of elements

includes: // This is the fundamental difference!

 Bag;

instance: // a new instance method

 op void insert(ELEM2 differentE) throws NullEx;

 // accepts duplicates, i.e. always inserts differentE

}

This definition by inclusion prevents a DoubleBag instance from being assigned

to a Bag variable and thus avoids the error described in section 5.1. The result

would be a bag in which some elements are of type ELEM and others of type

ELEM2.

Given a DoubleBag called mixedBag as follows

DoubleBag<Person, Animal> mixedBag =

 DoubleBag<Person, Animal>.init();

... // add some Person and some Animal elements to DoubleBag

 the for statement could be used as follows

for (x in mixedBag) {

 cast (x) as {

 (Person p) { /* code which addresses x as p,

 if the underlying object is a Person */}

 (Animal a) { /* code which addresses x as a,

 if the underlying object is an Animal */}

 else {throw new ErrorEx}

Chapter 12 GENERIC TYPES AND IMPLEMENTATIONS 106

}

A type template derived by inclusion does not exclude the possibility that this

can itself have subtype templates derived for example by extension, provided

that rules a) and b) are followed.

6 Deriving Type Templates by Multiple Inheritance

6.1 Deriving from Templates with a Common Ancestor Template

If a template is derived from multiple methods which directly or indirectly have

a common ancestor template the common methods are merged into a new tem-

plate according to the normal Timor rules involving a common ancestor (see

chapter 7), including the rules provided for overloading and overriding methods.

6.2 Deriving from Templates without a Common Ancestor Template

The following example has been construed to illustrate the principle involved

when a type inherits from separate ancestors. It is not part of the Timor Library.

Let us suppose that two forms of queue exist, defined as follows:

template<ELEM>

type FrontInserter{

 instance:

 op void insertAtFront(ELEM e);

 op ELEM removeFromBack();

 enq Boolean contains(ELEM e);

 enq Int size();

 op void clear();

}

template<ELEM>

type BackInserter{

 instance:

 op void insertAtBack(ELEM, e);

 op ELEM removeFromFront();

 enq Boolean contains(ELEM e);

 enq Int size();

 op void clear();

}

These could be used to create a type DEQ (double ended queue) as follows, using

the multiple inheritance technique described in chapter 7, section 4:

template<ELEM>

type DEQ{

Chapter 12 GENERIC TYPES AND IMPLEMENTATIONS 107

 extends:

 FrontInserter, BackInserter;

}

This definition
52

 is complete and according to the rules of parts inheritance the

new type has two insertion and two removal methods, but a single method size,

a single method clear, and a single method contains.

The general rule for inheriting from multiple type templates by extension is

that the two (or more) supertype templates must have the same type parame-

ter(s). If these differ, or if one has more generic parameters than the other, then

derivation can only be defined by inclusion.

Types which have generic type parameters may not be combined with types

which either do not have, or have different, generic type parameters.

7 Generically Defined Views

Views can be defined where appropriate with generic type parameters, but if

these are explicitly used to extend or to be included in another type, the same

generic type parameter must already be present in that type. In contrast with oth-

er types, views which themselves do not have generic type parameters can be

extended by or be included with type templates to create a new type.

8 Implementing Generic Types and Code Re-Use

The name of a generic implementation is its type name (which does not include

a generic identifier) and the appropriate suffix, e.g. List::Impl. This distin-

guishes it from the implementation identifiers for actualised implementations,

e.g. List<Person*>::Impl.

An implementation for an actualised type can be separately programmed

explicitly. For example, a bit-list implementation of a set of integers only makes

sense for Set<Int> and SortedSet<Int> (or equivalent types based on enu-

meration types).

Implementations of generic types otherwise follow the normal implementa-

tion and code re-use rules.

9 Implementing Generic Co-Types

The code re-use technique cannot be used in its normal form to achieve the re-

52 It is arguable whether the new subtype is actually behaviourally conform with its super-

types, but that is not something which the language designer should attempt to deter-

mine in cases where no obvious type safety rules are compromised. Designers who con-

sider that this example is not behaviourally conform can of course define the subtype

template in terms of inclusion rather than extension.

Chapter 12 GENERIC TYPES AND IMPLEMENTATIONS 108

use of code in adjusted co-types, because of the covariant adjustment of

TheType. But a small modification of the technique, using a double (rather than

the normal single) hat symbol, indicates to the compiler that the code of a re-use

variable should be covariantly adjusted to TheType of the co-type currently be-

ing compiled (cf. chapter 11 section 14).

10 Generic Function Parameters

The second generic feature of Timor is called generic function parameters. A

description of these appears in chapter 14, after the main features of the Timor

Collection Library (TCL) have been described. The reason for this decision is

that generic function parameters were introduced primarily as an enhancement

for the TCL, and are best understood in that context.

 109

 Chapter 13

The Basic Timor Collection Types

As was already indicated in Chapter 7 section 6, the Timor Collection Library

(TCL) provides a good example of the typing issues associated with multiple

inheritance from a common abstract ancestor, following the scheme proposed in

the doctoral thesis of Dr. Gisela Menger [2], which derives four further abstract

types and nine concrete types from the abstract type Collection, using two

basic criteria. The first concerns the decision whether duplicate items are permit-

ted, whether they are simply ignored, or whether an error is signalled when an

attempt is made to insert a duplicate. The second criterion is concerned with the

order of the elements in a collection, i.e. whether they are unordered (as in a

mathematical bag or set), whether they are user ordered (as in a list) or whether

they are automatically sorted according to some criterion, e.g. alphabetically.

Table 13.1, which repeats Table 7.1 for convenience, shows all nine concrete

types in terms of these criteria.

Collection

Type Name

Duplication

Criterion

Ordering

Criterion

Bag Allow duplicates No ordering

Set Ignore duplicates No ordering

Table Signal duplicates No ordering

List Allow duplicates User ordered

OrderedSet Ignore duplicates User ordered

OrderedTable Signal duplicates User ordered

SortedList Allow duplicates Sorted

SortedSet Ignore duplicates Sorted

SortedTable Signal duplicates Sorted

Table 13.1. The concrete collection types

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 110

In addition five abstract types are used to enhance polymorphism. The type hier-

archy is shown in Figure 7.1, repeated below as Figure 13.1.
53

In order to guarantee behavioural conformity all the common methods of

all collection types are initially defined in the abstract type Collection. Thus it

has an (abstract) method insert, for example, but this does not define

– how an insertion affects the ordering of the collection,

– whether the insertion will be successful if it involves inserting a duplicate,

– whether an exception will be thrown to indicate a duplicate (but it defines

an exception DuplEx which might be thrown).

An abstract type with such non-deterministic methods is designed to allow

a maximum of polymorphism. In derived types the actions of the insert meth-

od are specified more precisely, depending on the node in question. Thus the

insert method of the abstract type UserOrdered defines that insert appends

the element at the end of the collection (and adds new methods for inserting at

other positions) but without defining its duplication properties further. On the

other hand the insert method of the concrete type Bag is defined without speci-

fying ordering, but indicating that duplicates are accepted (with the effect that

the exception DuplEx can be removed from the insert method of Bag).

In order to reflect in an abstract way how the items in a collection are han-

dled the TCL makes extensive use of Timor's generic features, using the generic

identifier ELEM to represent a particular element (item) in a collection.

This chapter first provides a provisional definition of the abstract type

Collection and the types derived from it. Then an implementation is provided,

53

 The following description is based largely on parts of section 4 of [8].

Collection

Ordered

Table

Ordered

Sorted
User

Ordered
Bag

DuplFree

Set Table

Ordered

Set

Sorted

List

List

Sorted

Set
Sorted

Table

Figure 13.1: Structure of the TCL Collection Types

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 111

which illustrates the power and flexibility that can be achieved by separating

type inheritance from code re-use. It then illustrates how collection co-types can

be defined.

Note:

Although types such as Queue, DoubleEndedQueue, Stack, BoundedBuffer

and similar (and implementations thereof) belong in the library, definitions and

implementations are trivial and are not discussed here.

WARNING 1: The aim of the chapter is not to provide an exact definition of the

TCL, but to indicate its main features. A final definition may provide more

methods (e.g. by providing methods to remove all the elements indicated in the

parameters using a single method, or to replace one element by another).

WARNING 2: Parts of the chapter contain detailed code. Since a compiler does

not exist at the time of writing, the reader is warned that there may be both logi-

cal and syntactical errors in the code which could not immediately be detected. I

apologise for such errors.

WARNING 3: This chapter provides a preliminary explanation of collections. It

builds up an important basis for understanding the main principles underlying

Timor collections, and in that sense is comparable with collections in other ob-

ject-oriented languages. The chapter also provides a basis for a more advanced

collection concept, e.g. in commercial environments.

1 The Collection Types

This section provides type definitions for the standard collection types, begin-

ning with a definition of the abstract type Collection.

1.1 The Abstract Type Collection

The generic type Collection forms the basis for the remaining collection

types:

template <ELEM>

library abstract type Collection {

/* Collections may accept or reject duplicates.

 They may or may not be ordered. */

instance:

 enq Int size();

 // returns the number of elements in the collection

 op void clear();

 // removes all elements

 enq Boolean contains(ELEM e) throws NullEx;

 /* returns true if e is in the collection. The equality

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 112

 test uses the operator ==. Chapter 14 describes a more

 flexible mechanism for defining equality. */

 enq Int occurrences (ELEM e) throws NullEx;

 // returns the number of elements == e.

 op void insert (ELEM e) throws NullEx, DuplEx, BoundsEx;

 /* inserts element e. DuplEx may be thrown by subtypes. */

 enq ELEM get();

 /* gets and returns an element as determined in the

 subtypes.

 If the collection is empty the return value is null. */

 op void remove(ELEM e) throws NullEx, NotFound;

 // removes one element == e.

 op void loopInit ();

 /* This operation must be called before an interation

 begins */

 /* the implementation of loopInit and of getNext is

 described in section 4.8, where it is explained how the

 implementation "knows" what is the next element to be

 returned. */

enq ELEM getNext() throws EmptyCollection, IterationComplete;

 /* returns the next element in the List. */

} // end of type Collection

1.2 The Concrete Type Bag

template <ELEM>

library type Bag {

extends:

 Collection;

 // Bag accepts duplicates and is unordered.

redefines:

 enq ELEM get();

 /* returns an arbitrary element. For an empty bag it

 returns null. */

 op void insert(ELEM e) throws NullEx, BoundsEx;

 /* Since duplicates are permitted the exception DuplEx is

 removed from the insert method.

} // end of type Bag

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 113

1.3 The Ordered Types

There are three abstract types which are concerned with the ordering of ele-

ments.

1.3.1 The Abstract Type Ordered Collection

The methods in this type are added for all ordered collections, regardless of the

ordering technique.

template <ELEM>

library abstract type OrderedCollection {

/* OrderedCollection assumes an order based on the operator

 ≤. The positions are numbered from 0 to the end. A more

 flexible way of determining the order of elements is

 described in the next chapter. */

extends:

 Collection;

redefines:

 enq ELEM get();

 /* returns the first element in the collection, unless the

 element returned is null (in the case of an empty

 collection) */

instance:

 enq ELEM getAtPos(Int pos) throws BoundsEx;

 /* returns the element at the indicated position pos */

 op Boolean removeAtPos(Int pos) throws BoundsEx;

 /* removes the element at the indicated position. */

}

 // end of type OrderedCollection

1.3.2 The Abstract Type UserOrderedCollection

The methods in this type allow the user to organise the ordering of elements by

position.

template <ELEM>

library abstract type UserOrderedCollection {

// For UserOrderedCollection the user determines the position

extends:

 OrderedCollection;

redefines: // The following instance methods are redefined.

 op void insert(ELEM e)

 throws NullEx, DuplEx, BoundsEx;

 // appends e at end of collection

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 114

instance:

 op void insertAtPos(ELEM e, Int pos)

 throws NullEx, DuplEx, BoundsEx;

 /* inserts e at the specified position. The elements which

 were previously at the specified position and higher

 numbered positions automatically have the next higher

 positions; position is defined as an integer,

 starting at 0 for the first position */

}

 // end of type UserOrderedCollection

1.3.3 The Abstract Type SortedCollection

Collections of this type are automatically sorted. The operator ≤ is used to de-

termine the order.

template <ELEM>

library abstract type SortedCollection {

extends:

 OrderedCollection;

redefines:

 op void insert(ELEM e)

 throws NullEx, DuplEx, BoundsEx;

 /* uses the operator ≤ to determine the position at which

 the element e is inserted */

}

 // end of type SortedCollection

1.3.4 The Concrete Type List

A list may contain duplicates and is manually ordered.

template <ELEM>

library type List { // manual ordering, allows duplicates

extends:

 UserOrderedCollection, Bag;

redefines:

// DuplEx is removed from all instance methods:

 op void insert(ELEM e) throws NullEx, BoundsEx;

 op void insertAtPos(ELEM e, Int pos)

 throws NullEx, BoundsEx;

}

 // end of type List

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 115

1.3.5 The Concrete Type SortedList

A sorted list may contain duplicates and is automatically ordered. The operator

≤ is used to determine the order.

template <ELEM>

library type SortedList{

// Automatic ordering, allows duplicates

extends:

 SortedCollection, Bag;

redefines:

// DuplEx is removed in following instance methods:

 op void insert(ELEM e)

 throws NullEx, BoundsEx;

 }

 // end of type SortedList

1.4 The Unordered Duplicate Free Types

The operator == determines what is regarded as a duplicate.

1.4.1 The Abstract Type DuplFreeCollection

template <ELEM>

library abstract type DuplFreeCollection {

/* DuplFreeCollections reject duplicates. The test for

 equality is defined by the operator == */

extends: Collection;

}

 // end of type DuplFreeCollection

1.4.2 The Concrete Type Set

Like the type Bag, the type Set is unordered. The difference is that a Set may

not contain duplicates as determined operator ==. If it detects that a duplicate is

being inserted it ignores the insertion without signally this.

template <ELEM>

library type Set {

// Set rejects duplicates without throwing an exception

extends: DuplFreeCollection;

// A DuplEx is not thrown in the following method:

redefines:

 op void insert(ELEM e)

 throws NullEx, BoundsEx;

 }

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 116

 // end of type Set

1.4.3 The Concrete Type Table

The only difference between a Table and a Set is that in the case of a Table the

insert routine causes an exception. (This can be important in data processing

applications.)

template <ELEM>

library type Table {

// Table throws DuplEx when it receives a duplicate

extends: DuplFreeCollection;

// A DuplEx is thrown as approp. in the following method:

redefines:

 op void insert(ELEM e)

 throws NullEx, DuplEx, BoundsEx;

}

 // end of type Table

1.5 The Ordered Duplicate Free Types

In the following types use a the operator == to determine what is a duplicate and

where appropriate the operator ≤ to determine the ordering automatically.

1.5.1 The Type Sorted Set

template <ELEM>

library type SortedSet {

 /* Automatic ordering (based on the operator ≤);

 rejects duplicates by ignoring them. */

extends:

 SortedCollection,

 Set;

redefines:

 enq ELEM get();

 /* returns the first element, or null in the case of an

 empty Sorted Table. */

 op void insert(ELEM e)

 throws NullEx, BoundsEx;

 // DuplEx is removed from the insert method:

 } // end of type SortedSet

1.5.2 The Concrete Type SortedTable

template <ELEM>

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 117

library type SortedTable {

 /* Automatic ordering (based on the operator ≤);

 rejects duplicates by raising an exception */

extends:

 SortedCollection, Table;

redefines:

 enq ELEM get();

 /* returns the first element, or null in the case of an

 empty SortedTable */

 /* the following method is redefined to throw an exception

 if a duplicate element would result */

 op void insert(ELEM e)

 throws NullEx, DuplEx, BoundsEx;

} // end of type SortedTable

1.5.3 The Concrete Type OrderedSet

template <ELEM>

library type OrderedSet {

// manual ordering, ignores duplicates

extends:

 UserOrderedCollection, Set;

redefines:

 enq ELEM get();

 /* returns the first element, or null in the case of an

 empty OrderedSet */

 // DuplEx is removed from the following instance methods:

 op void insert(ELEM e)

 throws NullEx, BoundsEx;

 op void insertAtPos(ELEM e, Int pos)

 throws NullEx, BoundsEx;

} // end of type OrderedSet

1.5.4 The Concrete Type Ordered Table

template <ELEM>

library type OrderedTable {

// manual ordering, rejects duplicates by raising exception

extends:

 UserOrderedCollection, Table;

redefines:

 enq ELEM get();

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 118

 /* returns the first element, or null in the case of an

 empty OrderedTable */

 // DuplEx is thrown in following instance methods:

 op void insert(ELEM e)

 throws NullEx, DuplEx, BoundsEx;

 op void insertAtPos(ELEM e, Int pos)

 throws NullEx, BoundsEx, DuplEx;

} // end of type OrderedTable

2 The Collection Implementations

There are many ways of implementing the Timor collection types, e.g. with

linked lists, with hash tables, etc. The following example implementation is

based on arrays
54

.

The approach adopted takes advantage of the Timor concept of re-use vari-

ables (see chapter 8). In this way it is possible to provide a complete implemen-

tation of the type List, and re-use this with minor changes and without a loss of

efficiency to implement the remaining concrete types in the collection hierarchy.

For the reader's convenience subsection 2.1 provides a consolidated version of

the type List. Subsection 2.2 describes the array implementation of List, and

its adaptation to implementations of the other types follows in subsection 2.3.

2.1 A Consolidated Definition of the Type List

It may be helpful to some readers at this stage to have before them a consolidat-

ed definition of List to compare this with the implementation in section 2.2.

template <ELEM>

library type List {

// Lists accept duplicates. They are user ordered.

instance:

 enq Int size();

 // returns the number of elements in the collection

 op void clear();

 // removes all elements

 enq Boolean contains(ELEM e) throws NullEx;

 /* returns true if e is in the collection. The equality

 test uses the operator == */

 enq Int occurrences (ELEM e) throws NullEx;

 // returns the number of elements == e.

 op void insert (ELEM e) throws NullEx, DuplEx, BoundsEx;

54

 Arrays in Timor are similar to Java arrays.

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 119

 // appends e at end of collection

 op void insertAtPos(ELEM e, Int pos)

 throws NullEx, DuplEx, BoundsEx;

 /* inserts e at the specified position. The elements which

 were previously at the specified position and higher

 numbered positions automatically have the next higher

 positions */

 enq ELEM get();

 /* returns the first element in the collection, unless the

 element returned is null (in the case of an empty

 collection) */

 enq ELEM getAtPos(Int pos) throws BoundsEx;

 /* returns the element at the indicated position. If

 the position is invalid, null is returned */

 op Boolean remove(ELEM e)() throws NullEx;

 /* removes one element == e; returns true if an element

 is found and removed, otherwise false. */

 op Boolean removeAtPos(Int pos) throws BoundsEx;

 /* removes the element at the indicated position */

 enq ELEM getNext throws EmptyCollection, IterationComplete;

 // returns the next element in the List.

 /* the implemntation of getNext is described in section 5.8,

 where it is explained how the implementation "knows" what

 is the next element to be returned. */

 } // end of type List

2.2 An Array Implementation of the Generic Type List

template impl List::ArrayImpl {

// manual ordering, allows duplicates

state:

 ELEM[] arr = null;

 Int maxlength, length = 0;

constr: // The constructor for this implementation.

 List::ArrayImpl (Int maxlength = 1000) throws BoundsEx

 /* an example of a parameter with default value, see

 Chapter 3 section 6 */

 {

 if (maxlength < 1 || maxlength > 1000000)

 throw new BoundsEx();

 this.maxlength = maxlength;

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 120

 arr = ELEM[]::Impl(maxlength);

 }

instance:

 enq Int size() {

 // returns the number of elements in the collection

 return length;

 }

 op void clear() {

 // removes all elements

 length = 0;

 arr = null;

 }

 enq Boolean contains(ELEM e) throws NullEx {

 /* returns true if e is in the collection. The equality

 test uses the operator == */

 if (e == null) throw new NullEx();

 for (Int index in {0..length-1}){

 if (e == arr[index]) {return true;}

 else (return false;);

 }

 }

 enq Int occurrences (ELEM e) throws NullEx {

 // returns the number of elements == e.

 if (e == null) throw new NullEx();

 if (length == 0) return 0;

 Int count = 0;

 for (Int index in {0..length-1}){

 if (e == arr[index]) {count++;}

 }

 return count;

 }

 op void insert(ELEM e) throws NullEx, BoundsEx {

 // appends e at end of collection

 if (e == null) throw new NullEx();

 if (length == maxlength) throw new BoundsEx();

 arr[length] = e; // insert at end

 length++;

 }

 op void insertAtPos(ELEM e; Int pos)

 throws NullEx, BoundsEx {

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 121

 /* inserts e at the specified position. The elements which

 were previously at the specified position and higher

 numbered positions automatically have the next higher

 positions */

 if (e == null) throw new NullEx();

 if (length == maxlength || pos < 0 || pos > length)

 throw new BoundsEx();

 insertPos(pos, e);

 // call internal method; this adjusts length

 }

 enq ELEM get(){

 /* returns the first element in the collection, unless the

 element returned is null (in the case of an empty

 collection) */

 if (length == 0) return null;

 return arr[0];

 }

 enq ELEM getAtPos(Int pos) throws BoundsEx {

 /* returns the element at the indicated position. If

 the position is invalid, null is returned */

 if (pos < 0 || pos > length) return null;

 return arr[pos];

 }

 op Boolean remove(ELEM e) throws NullEx {

 /* removes one element == e; returns true if an element

 is found and removed, otherwise false. */

 if (e == null) throw new NullEx();

 if (length == 0) return false;

 for (Int index in {startPos..length-1}) {

 if (arr[index] == e) {deletePos(index); return true;}

 }

 return false;

 }

op Boolean removeAtPos(Int pos) throws BoundsEx {

 /* removes the element at the indicated position */

 if (length == 0) return false;

 if (pos < 0 || pos >= length) throw new BoundsEx();

 deletePos(pos);

 return true;

 }

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 122

op void loopInit (){ /* This operation must be called

 before each interation begins */

/* the implementation of loopInit and of getNext is

 described in section 4.8, where it is explained how the

 implementation "knows" what is the next element to be

 returned. */

}

enq ELEM getNext() throws EmptyCollection, IterationComplete{

 /* returns the next element in the List. */

 /* the implementation of getNext is described in section

 4.8, where it is explained how the implementation "knows"

 what is the next element to be returned. */

 }

internal:

 /* the method deletePos(Int pos) deletes the element at pos

 by moving all elements from (pos+1) down one position in

 the array, so that the former pos+1 is now at pos. The

 length is adjusted in the routine */

 op void deletePos(Int pos) {

 length--;

 Int index = pos;

 while (index < length) {arr[index]=arr[index+1]; index++;}

 }

/* the method insertPos(Int pos, ELEM e) moves all elements

 (starting at the end of the array) from pos down one

 position in the array, so that the former pos is now at

 pos+1. The new element is inserted at pos and the length

 is adjusted in this routine */

 op void insertPos(Int pos; ELEM e) {

 Int index = length;

 while (index ≤ pos) {arr[index]=arr[index-1]; index--;}

 length++; arr[pos] = e;

 }

} // end of List::ArrayImpl

2.3 Implementing the Remaining Types

The following implementations apply the Timor re-use technique to implement

the remaining types. In all cases this is based on the array implementation of

List (see section 2.2).

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 123

2.3.1 Implementing the Type Bag

All the methods in Bag are already implemented in List. (Some methods of

List (e.g. getAtPos) do not appear in Bag, because the latter has no defined

ordering of its elements. Since this is the only fundamental difference be-

tween List and Bag (both accept duplicates) the List methods can be re-used

without change. The fact that List has an ordering and Bag does not is not sig-

nificant, because the order of elements in Bag is arbitrary (and can therefore be

that of List).

Note: the following implementation is based on List::ArrayImpl, but any

other implementation of List can be used to implement Bag following the same

pattern (subject to different constructor parameters). Similar considerations ap-

ply to the implementation of other collection types.

template impl Bag::ArrayImpl {// unordered, allows duplicates

state:

 ^List::ArrayImpl myBag;

 /* a re-use implementation variable of List, which is

 constructed using the default constructor parameter */

with (myBag){

constr:

 Bag::ArrayImpl(Int maxlength) throws BoundsEx {

 // the constructor for this Bag implementation

 if (maxlength < 1 || maxlength > 1000000)

 throw new BoundsEx();

 myBag = List::ArrayImpl(maxlength);

 }

 /* no additional instance methods are needed; all the Bag

 methods are matched by List methods */

}

} // end of Bag::ArrayImpl

2.3.2 Implementing the Type Set

The difference between Set and Bag is that elements of the latter may not con-

tain duplicates as defined via the operator ==. Hence to re-use Bag all that is re-

quired is to override the latter's insert method. However, as the implementa-

tion of Bag simply re-uses that of List (without change), it is simpler to re-use

the List implementation directly.

template impl Set::ArrayImpl {

// unordered, ignores duplicates without raising exceptions

state:

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 124

 ^List::ArrayImpl mySet; // a re-use variable of List

with (mySet){

constr:

 Set::ArrayImpl(Int maxlength) throws BoundsEx {

 if (maxlength < 1 || maxlength > 1000000)

 throw new BoundsEx();

 mySet = List::ArrayImpl(maxlength);

 }

 instance:

 op void insert(ELEM e)

 /* overrides the insert method of List by first checking

 that an insertion is appropriate for a set, then uses

 the original insert method of List */

 throws NullEx, BoundsEx, FunctionParamEx {

 if (e == null) throw new NullEx();

 if (length >= maxlength || length < 0)

 throw new BoundsEx();

 if (length == 0) {mySet.insert(e); return}

 // check for duplicates and insert

 for (Int index in {0..length-1}){

 if arr[index] == e)) return;

 mySet.insert(e);

 }

 }

} // end of Set::ArrayImpl

2.3.3 Implementing the Type Table

The difference between Table and Bag is that elements of the latter may not

contain duplicates in accordance the operator ==. Hence to re-use Bag all that is

required is to override the latter's insert method. However, as the implementa-

tion of Bag simply re-uses that of List (without change), it is simpler to re-use

the List implementation directly.

template impl Table::ArrayImpl {

// unordered, raises exception for duplicates

state:

 ^List::ArrayImpl myTable;

with (myTable) {

constr:

 Table::ArrayImpl(Int maxlength) throws BoundsEx {

 if (maxlength < 1 || maxlength > 1000000)

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 125

 throw new BoundsEx();

 myTable = List::ArrayImpl(maxlength);

 }

 instance:

 op void insert(ELEM e)

 throws NullEx, DuplEx, BoundsEx {

 if (e == null) throw new NullEx();

 if (length >= maxlength || length < 0)

 throw new BoundsEx();

 if (length == 0) {myTable.insert(e); return;}

 // check for duplicates and insert

 for (Int index in {0..length-1}){

 if arr[index]== e)) throw new DuplEx();}

 myTable.insert(e);

 }

 }

} // end of Table::ArrayImpl

2.3.4 Implementing the Type OrderedSet

The difference between OrderedSet and List is that elements of the latter may

not contain duplicates. Hence to re-use List all that is required is to override the

latter's insert methods.

template impl OrderedSet::ArrayImpl {

// ordered, ignores duplicates without raising an exception

state:

 ^List::ArrayImpl myOrderedSet;

with (myOrderedSet) {

constr:

 OrderedSet::ArrayImpl(Int maxlength) throws BoundsEx {

 if (maxlength < 1 || maxlength > 1000000)

 throw new BoundsEx();

 myOrderedSet = List::ArrayImpl(maxlength);

 }

instance: // The following methods of List are overridden

 op void insert(ELEM e)

 throws NullEx, BoundsEx {

 if (e == null) throw new NullEx();

 if (length >= maxlength || length < 0)

 throw new BoundsEx();

 if (length == 0) {myOrderedSet.insert(e); return}

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 126

 // check for duplicates then insert

 for (Int index in {0..length-1}){

 if arr[index] == e return;

 myOrderedSet.insert(e);

 }

 op void insertAtPos(ELEM e, Int pos)

 throws NullEx, BoundsEx, FunctionParamEx {

 if (e == null) throw new NullEx();

 if (length >= maxlength || length < 0)

 throw new BoundsEx();

 if (length == 0) {myOrderedSet.insert(e); return}

 // check for duplicates then insert

 for (Int index in {0..length-1}){

 if arr[index] == e)) return;

 myOrderedSet.insertAtPos(e, pos);

 }

} // end of with statement

} // end of OrderedSet::ArrayImpl

2.3.5 Implementing the Type OrderedTable

The difference between OrderedTable and List is that elements of the latter

may not contain duplicates in accordance with the operator ==. Hence to re-use

List all that is required is to override the latter's insert methods.

template impl OrderedTable::ArrayImpl {

// ordered, raises exception for duplicates

state:

 ^List::ArrayImpl myOrderedTable;

with (myOrderedTable) {

constr:

 OrderedTable::ArrayImpl(Int maxlength) throws BoundsEx {

 if (maxlength < 1 || maxlength > 1000000)

 throw new BoundsEx();

 myOrderedTable = List::ArrayImpl(maxlength);

 }

 instance:

 op void insert(ELEM e)

 throws NullEx, DuplEx, BoundsEx {

 if (e == null) throw new NullEx();

 if (length == maxlength) throw new BoundsEx();

 if (length == 0) {myOrderedTable.insert(e); return}

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 127

 // check for duplicates and insert

 for (Int index in {0..length-1}){

 if (arr[index] == e) throw new DuplEx();}

 myOrderedTable.insert(e);

 }

 op void insertAtPos(ELEM e, Int pos)

 throws NullEx, DuplEx, BoundsEx {

 if (e == null) throw new NullEx();

 if (length == maxlength) throw new BoundsEx();

 if (length == 0) {myOrderedTable.insert(e); return}

 // check for duplicates then insert

 for (Int index in {0..length-1}){

 if arr[index] == e)) throw new DuplEx();}

 myOrderedTable.insertAtPos(e, pos);

 }

}

} // end of OrderedTable::ArrayImpl

2.3.6 Implementing the Type SortedList

The difference between List and SortedList is that elements of the latter are

ordered in accordance with the operator >. Hence to re-use List all that is re-

quired is to override the latter's insert method.

template impl SortedList::ArrayImpl {

// sorted according to >, allows duplicates

state:

 ^List::ArrayImpl mySortedList;

with (mySortedList) {

constr:

 SortedList::ArrayImpl(Int maxlength) throws BoundsEx {

 if (maxlength < 1 || maxlength > 1000000)

 throw new BoundsEx();

 mySortedList = List::ArrayImpl(maxlength);

 }

instance:

 op void insert(ELEM e)

 throws NullEx, BoundsEx {

 if (e == null) throw new NullEx();

 if (length == maxlength) throw new BoundsEx();

 if (length == 0) {mySortedList.insert(e); return}

 // now insert at appropriate position

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 128

 Int i = 0;

 while (arr[i] > e) i++;

 mySortedList.insertPos(i, e); /* Internal method of List;

 Internal methods of re-use variables can be invoked */

 }

} // end of SortedList::ArrayImpl

2.3.7 Implementing the Type SortedSet

The difference between SortedList and SortedSet is that elements of the lat-

ter may not contain duplicates in accordance with the operator ==. Hence to re-

use SortedList all that is required is to override the latter's insert method.

template impl SortedSet::ArrayImpl {

// ordered, ignores duplicates without raising an exception

state:

 ^SortedList::ArrayImpl mySortedSet;

with (mySortedSet) {

constr:

 SortedSet::ArrayImpl(Int maxlength) throws BoundsEx {

 if (maxlength < 1 || maxlength > 1000000)

 throw new BoundsEx();

 mySortedSet = SortedList::ArrayImpl(maxlength);

 }

 instance:

 op void insert(ELEM e)

 throws NullEx, BoundsEx{

 if (e == null) throw new NullEx();

 if (length == maxlength) throw new BoundsEx();

 if (length == 0) {mySortedSet.insert(e); return}

 // check for duplicates then insert

 for (Int index in {0..length-1}){

 if (arr[index] == e)) return;}

 mySortedSet.insert(e);

 }

 }

} // end of SortedSet::ArrayImpl

2.3.8 Implementing the Type SortedTable

The difference between SortedList and SortedTable is that elements of the

latter may not contain duplicates in accordance with the operator ==, and that an

exception is thrown if an attempt is made to insert a duplicate. Hence to re-use

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 129

SortedList all that is required is to override the latter's insert method.

template impl SortedTable::ArrayImpl {

// ordered, ignores duplicates but raises an exception

state:

 ^SortedList::ArrayImpl mySortedTable;

with (mySortedTable.mySortedList) {

constr:

 SortedTable::ArrayImpl(Int maxlength) throws BoundsEx {

 if (maxlength < 1 || maxlength > 1000000)

 throw new BoundsEx();

 mySortedTable = SortedList::ArrayImpl(maxlength);

 }

instance:

 op void insert(ELEM e)

 throws NullEx, DuplEx, BoundsEx, FunctionParamEx {

 if (e == null) throw new NullEx();

 if (length == maxlength) throw new BoundsEx();

 if (length == 0) {mySortedTable.insert(e); return}

 // check for duplicates then insert

 for (Int index in {0..length-1}){

 if (arr[index] == e)) throw new DuplEx();}

 mySortedTable.insert(e);

 }

}

} // end of SortedTable::ArrayImpl

3 Co-Types for the TCL Collection Hierarchy

Like other types the types in the TCL collection hierarchy can have correspond-

ing co-types. Just as a type can have several implementations it can also have

several co-types (and implementations thereof). In the first subsection a possible

standard co-type Collection&s for Collection is presented. In contrast with

the abstract type Collection, Collection&s is a concrete type. In the next

subsection an implementation thereof is described. In view of the automatic ex-

istence of an adjustment hierarchy (see chapter 11 sections 7ff.) based on the co-

type Collection&s it would be tedious and not particularly helpful to describe

the co-types (and their implementations) for all the subtypes of Collection.

3.1 A Co-Type for the Base Type Collection

This co-type identifies by the keyword TheType those types in the definition

which can be covariantly adjusted.

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 130

template <ELEM>

library type Collection&s expands Collection {

predefines instance:

 enq Int count(); // equivalent to a static method

 /* returns the number of created instances

 of concrete Collection subtypes, as recorded by

 the corresponding makers. See note below. */

predefines maker:

 /* The following makers provide a pattern for the

 concrete subtypes of Collection, which itself is an

 abstract type and therefore has no makers. */

 op TheType<ELEM> init();

 /* Creates an instance using the standard implementation

 and increments the count of instances.

 Successors for concrete expanded types create a new

 empty collection value of type TheType

 and increment the count of instances. */

 op TheType<ELEM> init(ImplName thisImpl) throws InvalidImpl;

 /* In this overloaded definion (see chapter 7 section 2)

 the parameter allows a user to select an implementation.

 Successors for concrete expanded types create a new

 empty collection value of type TheType

 and increment the count of instances. */

 op TheType<ELEM> convert

 (ImplName thisImpl; Collection<ELEM>*** c1)

 throws InvalidImpl, NullEx;

 /* Successors for concrete expanded types create a new

 collection value of type TheType and increment the count

 of instances. To do this they convert any collection c1

 to a collection value, using the specified

 implementation. */

 op TheType<ELEM> merge

 (ImplName thisImpl; TheType<ELEM>*** c1, c2)

 throws InvalidImpl, NullEx;

 /* Successors for concrete expanded types create a new

 collection value of type TheType<ELEM> by merging the

 content of two collections of the same type with

 elements of the same type and mode (see chapter 3

 section 6). The count of instances is incremented. */

 op TheType<ELEM> intersect

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 131

 (ImplName thisImpl; TheType<ELEM>*** c1, c2)

 throws InvalidImpl, NullEx;

 /* returns a new collection value by intersecting

 the content of two collections. The count is

 incremented */

 op TheType<ELEM> diff

 (ImplName thisImpl; TheType<ELEM>*** c1, c2)

 throws InvalidImpl, NullEx;

 /* returns a new collection value by taking the difference

 (c1-c2) between two collections. The count is

 incremented. */

predefines binary:

 enq Boolean equal(TheType<ELEM>*** c1, c2) throws NullEx;

 // compares two Collection instances for equality

 /* returns false if

 – either or both collections have no elements

 – the collections have different elements

 – the number of occurrences of any element is not equal

 */

 enq Boolean includesAll(TheType<ELEM>*** c1, c2)

 throws NullEx;

 // checks if c1 includes but is not equal to c2

 /* returns false if

 – either or both collections have no elements

 – the number of elements in c2 exceeds or equals the

 number of element in c1

 – any element in c2 is not present in c1

 */

} // end of Collection&s

Notes:

1. The co-type Collection&s is the base co-type for the Collection type

hierarchy. As such it (partially) automatically defines an adjustment hierar-

chy, i.e. a parallel hierarchy of co-types for the subtypes in the Collection

types (see Chapter 11 sections 7ff. and Figure 10.1). The special type iden-

tifier TheType designates where covariant adjustment takes place in the

corresponding co-types. For example in the co-type List&s, the type iden-

tifier TheType means List.

2. The predefined makers provide a pattern for the co-types of the concrete

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 132

Collection types, since abstract types cannot be instantiated.

3. Most makers have an integer parameter which allows the user to select one

of several implementations. How this can be implemented is shown in sec-

tion 3.2.1.

4. The predefined binary sections apply to the co-types of both abstract and

concrete types.

5. For each concrete type the corresponding co-type maintains a separate

count of the instances which it creates. It would be possible to arrange for

concrete types to inform the abstract types from which they are derived

when new instances are created, and for these in turn to inform the abstract

types from which they are derived, etc. In this way it would be possible for

the application programmer to determine, for example, the number of in-

stances of User Ordered or Duplicate Free instances, etc. and ultimately

how many Collection instances have been created. However, this is more

complicated to organise than one might think. But there is a much simpler

way to achieve this, i.e. by providing an application module which simply

sums the relevant concrete instances by using the count enquiry of the rel-

evant co-types.

6. In each case the makers return a value variable of type TheType. It is then

easy for the user to convert the result into a collection object or collection

capability by using the new or create keyword. For example to create a

module and its capability (with all access rights set to true) for a module of

type List<Person*> he can simply write

List**<Person*> lpfile = create List&s<Person*>.init();

3.2 Implementing the Co-Type Adjustment Hierarchy

It is important to note that in the co-type implementations only the public and

protected methods of the base types and of their co-types should normally be

used, to ensure that they apply to all the implementations of the corresponding

types. This implies that although it is theoretically possible to have implementa-

tions as re-use variables, a cleaner result can be achieved by relying only on re-

use variables which are defined as types.

3.2.1 Implementing Collection&s

 enum ImplName {default, array, linked, doubleLinked}

 /* This names all the available implementations of the

 collection types. In our example the default is array.

 The enumeration type is used in makers to allow users to

 select an implementation suitable for their particular

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 133

 application. It is not intended that only those

 implementations listed should be made available in the

 final TCL. */

template <ELEM>

library impl Collection&s::Impl {

state:

 Int count = 0;

 /* An explicit constructor is not required, because the

 state variables are initialised in the state section,

 see chapter 3 section 4. */

/* Unlike the abstract type Collection, the type Collection&s

 is a concrete type, which needs an implementation. */

predefines instance:

 enq Int count() {return count;}

 /* returns the number of created instances of TheType.

 For abstract types the count is always zero. */

predefines maker:

 /* The following makers provide a pattern for the subtypes

 and can be implemented via re-use variables. Collection

 itself and the other abtract types have no makers.

 */

 op TheType<ELEM> init() {

 /* Creates an instance (concrete expanded types only) using

 the standard implementation. Concrete expanded types

 return a new empty collection value of type TheType. */

 count++; // increments the count of instances of TheType.

 return TheType<ELEM>::Impl();

 // a constructor call for the standard implementation

 }

 op TheType init(ImplName thisImpl) throws InvalidImpl {

 /* In this overloaded definion (see chapter 7 section 2)

 the parameter allows a user to select an implementation.

 Successors for concrete expanded types return a new

 empty collection value of type TheType. */

 TheType<ELEM> newCollection = selectImpl(thisImpl);

 /* selectImpl is an internal method which constructs the

 required implementation and returns this to the caller */

 count++;

 return newCollection;

 }

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 134

 op TheType<ELEM> convert

 (ImplName thisImpl; Collection<ELEM>*** c1)

 throws InvalidImpl, NullEx {

 /* converts any collection c1 to a collection value

 of type TheType, using the specified implementation */

 if (c1 == null) throw new NullEx();

 TheType<ELEM> newCollection = selectImpl(implName);

 for (ELEM x in c1)

 try { newCollection.insert(x); }

 catch (DuplEx de) { /* ignore it! */ };

 count++;

 return newCollection;

 }

 op TheType<ELEM> merge

 (ImplName thisImpl; TheType<ELEM>*** c1, c2)

 throws InvalidImpl, NullEx {

 /* returns a new collection value by merging the

 content of two collections. */

 if (c1 == null || c2 == null) throw new NullEx();

 // create new collection

 TheType<ELEM> newCollection = selectImpl(implName);

 // the merge algorithm

 for (ELEM x in c1)

 try {newCollection.insert(y);}

 catch (DuplEx de) { /* ignore it! */}

 for (ELEM x in c2)

 try {newCollection.insert(x);}

 catch (DuplEx de) { /* ignore it! */

 count++;

 return newCollection;

 }

 /* ... see note 3 below for the implementations of the

 intersection and difference methods */

predefines binary:

 enq Boolean equal(TheType<ELEM>*** c1, c2) throws NullEx {

 // compares two Collection instances for equality

 if (c1 == null || c2 == null) throw new NullEx();

 if (c1.size = 0 || c2.size = 0) return false;

 if (c1.size() != c2.size()) return false;

 for (ELEM x in c1) {

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 135

 if (c1.occurrences(x) != c2.occurrences(x)) return false;

 }

 return true;

 }

 enq Boolean includesAll(TheType<ELEM>*** c1, c2)

 throws NullEx{

 // checks if c1 includes c2 but is not equal to c2

 if (c1 == null || c2 == null) throw new NullEx();

 if (c1.size = 0 || c2.size = 0) return false;

 if (c2.size >= c1.size) return false;

 for (ELEM x in c2)

 if (!(x in c1)) return false;

 return true;

 }

internal:

 op TheType<ELEM> selectImpl(ImplName thisImpl)

 throws InvalidImpl {

 case (implName) of {

 (default) {return TheType<ELEM>::Impl();}

 (array) {return TheType<ELEM>::ArrayImpl(*);}

 /* The asterisk signifies that the default parameter

 value should be used if the programmer does not supply

 one, see Chapter 3 section 7. */

 (linked) {return TheType<ELEM>::LinkedImpl();}

 (doubleLinked) {return new TheType<ELEM>::DoubleLinked();}

 else {throw InvalidImpl();}

 }

 }

} // end of Collection&s

Notes:

1. Makers always return a collection in value mode. Application programmers

can easily use the new or create operator on the result to produce the re-

quired mode.

2. In some of the method input parameters for collections are passed using

handles, using the *** notation. These parameters are used in for loops to

cycle through the elements in the collections. This as such is not problemat-

ic, since a for loop can cycle through the elements of any collection.

3. The more interesting question concerns the modes of the elements in a col-

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 136

lection. These are not immediately obvious from a type definition using the

generic identifier ELEM. However, when actualisation occurs at runtime the

actual modes are known and if a single parameter is used (as in the case of

the maker convert) the situation is straightforward. Where multiple collec-

tion parameters are input (as in merge) the collections to be merged must

be of the same type and their elements must also have the same mode. This

is guaranteed in that the parameter description TheType<ELEM>*** c1,

c2 defines them both as having the same ELEM type (which implies that

their elements have the same mode). In a more complicated merge method

which for example also changes the mode of elements in the second param-

eter to those of the first parameter, the two parameters would have to be de-

clared separately and an explicit mode coercion cast (e.g. (reference),

see chapter 4 section 4) would be necessary.

4. In this implementation of Collection&s the binary methods are real meth-

ods which can accept collections of any of the Collection subtypes. In the

binary methods no problems arise as a result of their differences. Both

methods rely simply on the "statistical" methods and then run through the

two collections (regardless of their types). This is also true for the other ab-

stract types.

5. The makers init() and init(ImplName thisImpl) are also straightfor-

ward. The makers convert and merge contain code which simply ignores

DuplEx exceptions in the for loops which insert elements into a new col-

lection, as a result of attempting to create a Table, an OrderedTable or a

SortedTable. With respect to the ordering of elements in collections

which these methods create, this is organised by the insert methods.

6. The makers intersect and diff have somewhat more complicated algo-

rithms than merge, but otherwise follow the same pattern. Since the aim is

to describe the features of Timor and not to present and discuss particular

algorithms, the descriptions of intersect and diff have been omitted.

7. In the internal method selectImpl some individual constructor calls take

advantage of the default parameter facility (see chapter 3 section 6). If

TheType were actualised to List and implementation name array were

used, the actual array would be initialised according to the parameter de-

fault, in this case to hold up to 1000 elements (see chapter 13 section 2.2.).

3.2.2 Implementing the Remaining Co-Types

The considerations discussed in Notes 4 and 5 of section 3.2.1 apply not only to

Collection&s but also to implementations for all the remaining co-types in the

adjustment hierarchy. Hence they are very easy to implement, as follows

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 137

template <ELEM>

library impl Ordered&s::Impl /* or the co-type for any other

abstract or concrete collection type */

{state:

 ^^Collection&s::Impl;

}

Of course real makers appear only in the implementations for the concrete co-

types.

4 Collection Syntax

Although the methods of the collection types can always be called explicitly,

Timor provides additional syntactic possibilities for accessing collections
55

. In

this subsection the following definitions are assumed:

List<Person> pList;

List<Student> studentList;

Here are some of the features.

4.1 Collection Literals:

The expression {1..10, 12, 15..20} is collection expression which is an

example of a literal of type List<Int>. Collection literals are always of type

List, because the type List is compatible with all other collection types in the

sense that lists are ordered and can contain duplicates, and hence can be con-

verted to other collection types using the appropriate maker.

List literals are bounded by curly brackets and either

a) contain integers and/or ranges of integers, separated by commas (as in the

above example), or

b) list elements of any appropriate type, separated by commas, optionally pre-

ceded by a type name and a colon, e.g.

 {Person: p1, p2}

 or

 {"MyString", s, "HerString"}, etc.

 The type name is optional if the type is that of the first element in the list.

4.2 Subcollection Selection

A subcollection expression returns a selection of the elements in a collection,

55

 This syntax is based largely on the syntax as defined for her language Collja by Dr.

Gisela Menger in her Ph.D. thesis [2].

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 138

based either on a predicate or by position.

A. Selection by Predicate:

A variable (here Person p) can be declared which is used in the predicate (a

Boolean expression) as the criterion for selecting the elements which appear in

the subcollection, e.g.

myPersonSet{Person p:

 p.dateOfBirth.toString() < "1/1/1950" && p.spouse != null}

The subcollection which is returned is of the same type as the collection on

which it is based. It can then be assigned, for example, to a collection variable,

e.g.

Set<Person> marriedElderlyPersons = myPersonSet{Person p:

 p.dateOfBirth.toString() < "1/1/1950" && p.spouse != null}

B. Selection by Position:

For ordered collections a subcollection can be created as a subrange of the ele-

ments of the collection on which it is based. In this case a variable is not re-

quired. Here is an example:

Set<Person> reducedPersonSet = myPersonSet{i .. j};

where i and j are integer variables or literals. The first element in a collection is

considered to have position 0.

4.3 Element Selection

An element expression selects a single element from a collection. This element

is selected in a similar manner to that of subcollections, by predicate or by posi-

tion.

A. Selection by Predicate:

Whereas the predicate for subcollections is enclosed in curly brackets, square

brackets are used for selecting a single element, e.g.

Person marriedElderlyPerson = myPersonSet[Person p:

 p.dateOfBirth > "1/1/50" && p.spouse != null];

The first element matching the criterion is selected for ordered collections, or an

arbitrary matching element for unordered collections.

B. Selection by Position:

Selection by position (for ordered collections) also uses square brackets and in

this case a single position is nominated, e.g.

Person aPerson = myPersonSet[3];

In effect this allows ordered collections to appear as arrays in other languages.

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 139

4.4 Type Conversion

A special conversion operator is not necessary since the programmer can always

achieve this by using a cast. For example a list of students studentList can be

accessed as a Set<Person> by writing(Set<Person>)studentList.

4.5 Collection Operators

The union, difference and intersection expressions for collections are as follows.

Union/Merge: list1 + list2, list1 + {p}

Difference: list1 - list2, list1 - {p}

Intersection: list1 * list2, list1 * {p}

Each of the concrete collection types has a standard co-type which includes

three makers: merge, which forms the union of (i.e. merges) two collections into

a new collection), difference (which creates a new collection containing the

difference between two collections) and intersect (which creates a new col-

lection containing the intersection of two collections). The input parameters are

in all cases of type Collection, i.e. any collections can be input, regardless of

the place in the collection hierarchy. The returned instance is a collection of the

type expanded in the individual co-type. The results of these operations take into

account the duplication and ordering properties of the resultant type.

The reference copy operator =* is used for copying collections of objects

(see Chapter 4 section 7). It creates a collection which contains only references

to objects from another object collection.

The abstract collection types cannot be instantiated, and therefore cannot

have makers. Consequently the rule used for the comparison operators, that the

nearest common ancestor determines the methods to use, cannot straightfor-

wardly be applied to the use of operators which create new collections (conven-

tionally + (merge), - (difference), * (intersect)). The following rule is therefore

applied. These three operations are only applicable to cases in which the two

operands have the same static type, i.e. mixed collection types cannot be operat-

ed on using these operators
56

. However, this does not limit the programmer from

carrying out operations on mixed types by directly using the appropriate co-type

methods.

4.6 Boolean Expressions

The standard comparison operators can be used to compare two collections

which have elements of the same type or where the elements are in a subtype

56

 This does not exclude operations on collections which include subtype instances of the

static type.

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 140

relationship to each other.

Equality: list1 == list2, list1 != list2

Identity: list1 ~~ list2, list1 !~ list2

IncludesAll/IncludesEqual:

 list1 > list2, list1 >= list2

(alternative): list1 ⊃ list2, list1 ⊇ list2

Contains: elem in list1

Included/IncludedEqual: list1 < list2, list1 <= list2

(alternative): list1 ⊂ list2, list1 ⊆ list2

The compiler uses the 'equal' and 'includesAll' collection co-type methods in the

obvious way, returning the normal subset/subbag relationships.

The operator in checks whether an element (first operand) is present in a collec-

tion (the second operand) and returns a boolean result, e.g.

if p in StudentCollection

The first operand must be a single instance and the second a collection with el-

ements of the same type or of a subtype thereof.

4.7 Iteration

As indicated in chapter 2 section 1 Timor supports while, repeat and for

statements. The for statement needs some further explanation here, since it de-

scribes how the programmer can iterate through the elements in a collection.

Here is an example:

Int separatedPersons = 0;

for (Person p in myPersonSet) {

 if (p.spouse != null && p.spouse.address != p.address)

 {separatedPersonSet.insert(p); separatedPersons++;}

}

[else {...}] // do something if myPersonSet has no elements

Notes:

1) myPersonSet is a collection expression, which might for example be a

subcollection.

2) Person p is a variable of the element type of the collection expression,

which is used to address each element in the collection in turn.

3) The else clause is optional.

Here is an example of a simple for statement:

for (Int i in {1..10, 12, 15..20}) {...};

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 141

4.8 Implementing the for Statement

Some aspects of implementing the for statement need further explanation.

4.8.1 Iterating through Ordered and Unordered Collections

The order of selecting elements while iterating through an ordered collection is

straightforward, the elements are selected in the order defined for the collection

in question. The order of selecting the elements in an unordered collection, i.e.

in a Set, a Bag or a Table, is nondeterministic and in practice may depend on

the implementation of the collection in question. Hence for unordered collec-

tions the user cannot rely on the same order being used each time.

4.8.2 How Does the Method getNext know which Element to return next?

This is by no means a straightforward issue, especially in an environment such

as ModelOS, where multiple threads may be concurrently accessing (and iterat-

ing through) the same collection in parallel. Furthermore it is possible that these

threads might be using different implementations for the same type (but of

course not for the same instance, since an actual instance has only a single im-

plementation).

Timor follows the same strategy as ModelOS, which provides a mechanism

called retained data
57

. The retained data section of an implementation enables

separate data segments to be defined for each thread which opens an instance of

a module. Data in this section can be initialised, accessed, modified and deleted

as appropriate by the thread which opened the module whenever the latter is ac-

tive in the module, until it closes the module (at which point the retained data for

the calling thread is deleted). Different instances of the retained data can be ac-

tive in parallel in different threads, provided that they have opened the module.

No thread can address or access the retained data of a different thread.

In terms of the specific issue of iterating through a loop, a thread which has

opened the module can make a note in its retained data of how far through the

loop it has reached as it executes the getNext method. Since each thread has its

own retained data which cannot be accessed by other threads, different threads

cannot interfere with each other's progress through the loop. Note that the syn-

chronisation protocol guarantees this, since when a module is opened by a

thread it must indicate whether it wishes to access the module as a reader or a

writer. An active writer thread can open and modify the module, but the syn-

chronisation mechanism automatically excludes other threads (writers and read-

ers) from accessing the module's data while the writer is active. If multiple read-

ers are active they can change neither the elements nor their ordering, and since

57

 see chapter 3 section 4 and for the ModelOS aspects see chapter 18 section 4 of (1).

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 142

each has a separate retained data segment it cannot interfere with the others'

progress markers.

The implementation of progress markers is not system defined but depends

instead on the nature of an actual implementation. For example if the implemen-

tation uses an underlying array structure, as in the example implementation in

section 2.2 of this chapter, then the marker might be an index value, whereas if

for example a linked list is used, the marker might be a pointer into the collec-

tion structure, etc.

4.8.3 Adding a Progress Marker to the Example Implementation

The example implementation in section 2.2 can now be completed. This in-

volves first adding a retained section:

retained:

 Int nextElem = 0; /* In the array implementation the marker

 for the next element is an index into the array */

Then appropriate looping methods must be provided:

op void loopInit (){ /* This operation must be called

 before each interation begins */

 nextElem = 0;

}

enq ELEM getNext() throws EmptyCollection, LoopComplete {

 if arr == null throw new EmptyCollection();

 if nextElem == length throw new LoopComplete();

 nextElem++;

 return arr[nextElem - 1];

}

A thread can invoke the loopInit at any point in its execution. If an iteration is

partially complete, the effect is that the next invocation of getNext will return

the first element.

4.8.4 Openable Collections

The solution as presented so far is incomplete, since it relies on the collection in

question being openable. It will be recalled that two special methods (open and

close) were introduced in chapter 3 section 6, which are categorised neither as

enq nor as op. Then in chapter 11 section 5 it was shown how these methods can

easily be added to any other Timor type and thus produce an Openable version

of the type. Does this imply that any collection module through which a program

can iterate should be openable? We now seek an answer to this question.

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 143

4.8.4.1 Using Collections as File Modules in ModelOS

In the ModelOS environment collections will frequently be used as persistent

free-standing file modules (data bases) which hold elements that can be accessed

by other ModelOS modules via the routines described in section 1 above.

Since in multi-user or multi-threading environments such files will fre-

quently be accessed in parallel by different threads there is a need to synchronise

such access. At the Timor level this can be organised by defining them as open-

able ModelOS files as described in chapter 18 of [6]. At the Timor level this

means that the chosen collection type should be composed together with the

view component Openable (see chapter 11 section 5), for example to define a

new type OpenableList, e.g.

type OpenableList<ELEM> {

 extends Openable, List<ELEM>;

}

A definition of Openable (cf. chapter 10 section 5) might be as follows:

enum OpenMode {closed, read, write}

view Openable {

 op void open(OpenMode mode) throws OpenError;

 op void close();

 enq OpenMode openMode();

}

The qualifier OpenSynchroniser (see chapter 10 section 5, which also provides

an implementation) can then be used to synchronise the OpenableList meth-

ods.

4.8.4.2 Using Collections as Small Objects in a Timor Program

Most programming language designers usually think of collections as temporary

objects in non-persistent systems, and might therefore find the idea of opening

and closing collections somewhat strange. But they should also recall that con-

ventional programming languages need to fall back on unusual mechanisms to

allow programmers to iterate though collections, e.g. iterators in languages such

as Java and C++. The main advantages of the ModelOS/Timor mechanism are:

a) They use a mechanism which is not special to the issue of iterating through

collections. Retained data and the opening/closing of objects can be useful

in many situations.

b) They provide synchronised access, which is important in systems that allow

multiple threads to access a collection in parallel.

c) Although the application programmer must use the open/close routines, he

Chapter 13 THE BASIC TIMOR COLLECTION TYPES 144

does not need to be concerned with the complexities of retained data and

the getNext routine, since this is hidden from him by the for statement.

d) In a single-threading (or an appropriately synchronised) environment which

only uses the for statement to iterate through simple sets of literal expres-

sions such as

 for (Int i in {1..10, 12, 15..20}) {...};

the compiler can handle this without using open/close routines.

4.8.5 Implementing Retained Data in Conventional (non-ModelOS) Envi-

ronments

In ModelOS environments retained data segments are provided at the operating

system level. But such support is not available in conventional environments. To

implement the equivalent in such systems is relatively easy, provided that the

run-time system can identify threads/processes. In this case a data structure is

needed which consists of a list of records consisting of a thread/process number

and the retained data information for that thread/process. Such a record can be

created by the open routine and deleted by the close routine called by the respec-

tive threads/processes, and of course updated by routines such as getNext, etc.

 145

 Chapter 14

Generic Function Parameters

Timor's second generic feature allows generic expressions to be provided as pa-

rameters to constructors
58

. In the form supported by Timor this is a variant of an

idea first proposed by my former research student and assistant Dr. Mark

Evered, which he called 'expression parameters' and which he incorporated into

a Java-like language Genja [28, 29]; this idea was also included in the Java-like

Collja language [2] developed by my former research student and assistant Dr.

Gisela Menger.

However, two changes have been made to the original proposal (apart from

adapting it to the different structure of Timor).

• In Evered's original work expression parameters (which are only associated

with constructors) are a factor in determining the type of objects, e.g. a

Person set with one criterion for rejecting duplicates differed in type from

a Person set which used different criteria for rejecting duplicates; this is

not the case in Timor.

• Second, his syntax for expression parameters includes a default option,

which is not present in Timor.

Generic function parameters should not be confused with function parame-

ters in other languages. They can be statically associated with constructors of

implementations, in which case the actualisation of the generic function does not

change over the lifetime of an instance); these are known in Timor as static

function parameters. They appear in constructor definitions and can be actual-

ised in different ways when a constructor is invoked.

58

 The primary contexts for which function parameters were designed are the Timor Col-

lection Library (see chapter 14) and similar Timor container types, such as Stack and

Queue types. Hence the examples in this chapter are based on the TCL types.

Chapter 14 GENERIC FUNCTION PARAMETERS 146

An extension of Evered's idea, which we called "dynamic function parame-

ters", was also considered. The basic thought behind this was to allow function

parameters to be defined in individual instance methods of a collection type in a

similar manner to the static function parameters described below. But despite

some attractive aspects of this (e.g. it in effect gave applications a mechanism

which allowed them to formulate requests in terms of the "columns" of a collec-

tion and thus enabled an approach resembling relational databases). However,

the idea was abandoned because it would have involved the use of call back

methods; this would have resulted in less efficient and more restricted than pro-

grams than can be written simply using the normal instance methods of collec-

tions. It would also have unnecessarily complicated the ModelOS design. Never-

theless a similar effect with respect to the formulation of requests in terms of the

"columns" of a collection can be realised in Timor (in a simpler manner) via

some features of the collection syntax described in chapter 13, section 4 (e.g.

subcollection selection and element selection by predicate).

1 Function Clauses

Static function parameters are defined in function clauses, which contain a list of

function headers in a bracket pair < >, using syntax resembling that of Timor

method headers. A function clause appears immediately before the normal pa-

rameter list of the constructor or method. If a constructor or method has more

than one function parameter, these are separated by semicolons, e.g.

<Boolean EQUAL(ELEM e1,e2); Boolean PRECEDES(ELEM e1,e2)>

Each function header consists of a type name (defining the type which it re-

turns), followed by its generic identifier and then by a list of "normal" method

parameter declarations, which may use generic type identifiers defined in the

type template in which the parameter is embedded. Typically the generic method

parameters (of type ELEM in our examples) refer to elements in the collection.

In contrast with normal Timor method headers, function headers are not

preceded by the keyword op or enq, because they are pure functions which may

not modify (nor access in any way) the state data of an actual implementation.

A function parameter is actualised when the constructor is invoked; the ac-

tualisation takes the form of source code that uses expression syntax (in a round

bracket pair ()). The value returned must be of the type specified in the function

parameter.

2 Motivation for Static Function Parameters

Static function parameters (like Evered's expression parameters) are needed

when the same parameter actualisation can be used over the lifetime of the in-

Chapter 14 GENERIC FUNCTION PARAMETERS 147

stance of the type, in one or more instance methods. Here are some examples.

Collection types derived from the abstract type DuplFree (see Figure 13.1)

do not permit duplicate elements. An issue which then arises is what criterion

determines when a potential element should be considered a duplicate. For ex-

ample it might be reasonable in one case to define a Set<Person*> where the

name and date of birth of individual elements must differ, but in another case it

might be more appropriate to ignore Person* elements with the same passport

number.

Similarly, concrete collection types derived from the abstract type Sorted

(see Figure 13.1) automatically order the elements in a collection and therefore

need a mechanism for determining which element should precede another.

Criteria of this kind only make sense if applied consistently over all the in-

vocations of the relevant methods of a specific instance of a type and are there-

fore associated statically with an instance when it is constructed.

The function clause illustrated in the previous section, i.e.

<Boolean EQUAL(ELEM e1,e2); Boolean PRECEDES(ELEM e1,e2)>

is in fact a static function clause used for those types in the TCL which are de-

rived by multiple inheritance both from DuplFree and from Sorted (i.e.

SortedSet and SortedTable).

The first function is the EQUAL function which has two input parameters

of the generic type ELEM and returns a boolean result 'true' if the comparison

undertaken determines that these two elements e1 and e2 are 'equal' (according

to a definition to be supplied later in an actualisation, when the constructor is

called).

The second function is the PRECEDES function, which also has two input

parameters of the generic type ELEM and returns a boolean result 'true' if the

comparison undertaken determines that the element e1 'precedes' the element

e2.

3 Defining Static Function Parameters in Type Templates

Although they do not play a role in determining the type of instances, static

function clauses are included in type templates immediately following the tem-

plate header, preceded by the keyword func. This allows the designer of the

template to indicate that particular static functions are needed and should be

used in implementation templates. From the implementer's viewpoint it defines

what static function parameters should be made available in constructors for

every implementation of the template. Users of the type can identify what pa-

rameters they must provide in every constructor call to create an instance of the

Chapter 14 GENERIC FUNCTION PARAMETERS 148

type, regardless of the implementation chosen. Here is an example:

template <ELEM>

func <Boolean EQUAL(ELEM e1,e2);

 Boolean PRECEDES(ELEM e1,e2)>

 /* static function parameters are used in implementations

 of the collection type's instance methods */

type SortedSet {

extends: DuplFree<ELEM>; Sorted<ELEM>;

...

}

4 Using Static Function Parameters in Implementations

A static function parameter defined for a type can appear in an implementation

of any method in the type, and is not repeated in the definitions of individual

methods.

Here is a partial implementation of SortedSet, showing how the function

parameters might be used in the insert method. Note that the static functions

are implemented in the implementations of the collection type, but when these

are later invoked in invocations of the methods in which they are embedded,

they must be independent of a particular collection implementation.

template impl SortedSet<ELEM>::ArrayImpl {

state:

 ELEM[] arr = null;

 Int maxlength, length = 0;

constr: // The constructor for this implementation

 SortedSet::ArrayImpl /* the constructor id is followed

 by the static parameters from the type template,

 as follows */

 <Boolean EQUAL(ELEM e1,e2); Boolean PRECEDES(ELEM e1, e2)>

 // and is then followed by the normal constructor parameters

 (Int maxlength)

 { // and now the constructor code

 this.maxlength = maxlength;

 arr = ELEM[]::Impl(maxlength);// a Timor array constructor

 }

instance: // the instance methods of the type

 ...

op void insert(ELEM e) throws NullEx {

 if (e == null) throw new NullEx();

Chapter 14 GENERIC FUNCTION PARAMETERS 149

 Int i = 0;

 while (i < length && PRECEDES(arr[i], e)) i++;

 /* This loop iterates to find the appropriate position

 for the insertion, as defined in the actualisation of

 the static parameter PRECEDES */

 if (i == (length-1) && !(EQUAL(arr[i], e)))

 throw new OutOfBounds();

 // an insertion requested beyond end of the array

 if (i < length) {

 if (EQUAL(arr[i], e)) return;

 /* ignore this insertion request because the type is a

 subtype of Set */

 else {for (Int k in {k..(i+1)}) arr[k] = arr[k-1];}

 arr[i] = e; length++;

 }

}

}

The comments in the above code are intended to be helpful, but may actual-

ly be confusing for some. We therefore repeat the code without the comments:

template impl SortedSet::ArrayImpl {

state:

 ELEM[] arr = null;

 Int maxlength, length = 0;

constr:

 SortedSet::ArrayImpl <Boolean EQUAL(ELEM e1,e2),

 Boolean PRECEDES(ELEM e1, e2> (Int maxlength)

 { this.maxlength = maxlength;

 arr = ELEM[]::Impl(maxlength); }

instance:

 ...

op void insert(ELEM e) throws NullEx {

 if (e == null) throw new NullEx();

 Int i = 0;

 while (i < length && PRECEDES(arr[i], e)) i++;

 if (i == (length-1) && !(EQUAL(arr[i], e))

 throw new OutOfBounds();

 if (i < length) {

 if (EQUAL(arr[i], e)) return;

 else {for (Int k in {k..(i+1)}) arr[k] = arr[k-1];}

Chapter 14 GENERIC FUNCTION PARAMETERS 150

 arr[i] = e; length++;

 }

}

}

5 Actualising Static Function Parameters

Static function parameters are actualised when an instance of a type is construct-

ed. For example a constructor for SortedSet could be invoked as follows. This

returns an instance of the type SortedSet.

SortedSet<Person>::ArrayImpl // a constructor

 <(e1.name == e2.name && e1.address == e2.address),

 // an expression actualisation of EQUAL

 (e1.passportNum < e2.passportNum)>

 // an expression actualisation of PRECEDES

(256); // the normal constructor parameter

Associating the static function parameters with constructor invocations allows

each instance of the same type to have different criteria, e.g. for determining du-

plicates. At the same time actualising the function parameters with each instanti-

ation of a type ensures that for a particular instance of the type the same static

parameter actualisation is consistently applied whenever methods which use the

actualisation (e.g. insert) are invoked on that instance.

When a constructor which has static function parameters is invoked, the

compiler configures the code for that instance in accordance with the actualisa-

tion(s) provided. The language does not define how this happens, but several

implementations are possible.

5.1 A Suggested Implementation

The advantage of static function parameters is that they do not change through-

out the lifetime of the instance being created by the constructor.

 Especially in the case of a collection being used as a persistent file module

the lifetime of the module could be very long (e.g. a payroll file in a business);

this suggests that run-time efficiency should be a primary consideration. In such

cases it would be sensible to re-compile the module to match the requirements

laid down in the specific actualisation of the static function parameters. This

would primarily involve replacing each invocation of the function parameter(s)

with the actualisations. This requires the identification of the parameters in the

actualisation and substituting these for the appropriate values in the constructor's

implementation code. In this case e1 = arr[i] and e2 = e in the EQUAL actu-

alisation which are correspondingly modified by .name and .address, and

Chapter 14 GENERIC FUNCTION PARAMETERS 151

mutatis mutandis for the PRECEDES actualisation. For example the insert

routine in the last example (section 3.3) would be changed as follows using the

actualisations described in section 3.4:

op void insert(ELEM e) throws NullEx {

 if (e == null) throw new NullEx();

 Int i = 0;

 while (i < length && (arr[i].passportNum < e.passportNum))

 i++;

 if (i == (length-1) && !(arr[i].name == e.name &&

 arr[i].address == e.address))

 throw new OutOfBounds();

 if (i < length) {

 if (arr[i].name == e.name &&

 arr[i].address == e.address) return;

 else {for (Int k in {k..(i+1)}) arr[k] = arr[k-1];}

 arr[i] = e; length++;

 }

}

This proposal has the further advantage that the compiler automatically checks

the actualisation text for errors.

 152

 Chapter 15

Support for ModelOS

Timor was designed as a general purpose component oriented programming lan-

guage, but with support for ModelOS as one of its main aims. How some special

aspects relating to ModelOS are handled in Timor is explained in this chapter.

1 Returning Values of User-Defined Types

ModelOS has a rule that references cannot be passed or returned as parameters

for file modules
59

, to avoid a potential world-wide garbage collection problem,

see Chapter 20 section 6 of [6]. The only parameters and return values permitted

are values and capabilities. On the other hand Timor, like many OO languages,

permits only a single return value for methods. This raises the question of how a

value of a user-defined type which consists of multiple fields can be passed or

returned.

The answer is that the Timor compiler decomposes, passes and returns the

constituent fields of such a type as individual ModelOS parameters on inter-

module calls and returns. However, if any of these fields are defined as refer-

ences (rather than capabilities and values) or as values of nested user defined

types (whether or not these contain references) a compile time error occurs.

Note that this mechanism applies only to inter-module calls (i.e. calls to and re-

turns from file modules activated via capabilities. Normal calls between objects

held within the same module are managed as normal.

There is one exception to this rule. ModelOS modules which are held in the

same container (including co-modules such as the segment manager, library

modules and some closely related application modules, which are discussed in

chapter 18 section 7 of [6], can pass reference (i.e. ModelOS pointer) parame-

ters. Timor indicates which modules may receive such parameters in that the

type name is preceded by the designation comod or library, as appropriate.

59

 The parameters of calls to internal objects within a module can include references.

Chapter 15 SUPPORT FOR SPEEDOS 153

2 Handling ModelOS Access Rights

Access rights (which are based on ModelOS semantic access rights) can be de-

fined in a restrictor which directly follows the type name in a variable or param-

eter declaration. This consists of a list of allowable methods in the bracket pair

[: method list :]. Methods can be individually named in such a list
60

, e.g.

TextFile[:insert, remove:]* tf;

However, it is often more convenient to use view names. If a programmer wants

to pass a parameter to a method which is only allowed to use the Openable

methods of a text file object, the parameter could be declared as:

TextFile[: Openable :]* tf;

To ensure that programmers cannot avoid this restriction by assigning the asso-

ciated instance to another TextFile* variable, the compiler (or its run-time sys-

tem) ensures that assignments are only possible to variables with the same or

more stringent restrictions. (In the case of modules, ModelOS controls the use of

access rights in capabilities.)

Predefined Views

There are some predefined views which are especially useful in defining re-

strictions. These include (but are not limited to) the following:

all = all the methods of the type being restricted.

allonly = all the methods of the type are available, but also that the

cast statement cannot be used to gain downcast access to

the methods of a subtype object.

op = all the operations associated with the type.

enq = all the enquiries associated with the type.

body = for a qualifying type, the body operation can be called (in a

call-in bracket method only).

call = for a qualifying type, the call operation can be called (in a

call-out bracket method only).

overwrite = the value of the object currently associated with the varia-

ble may be overwritten with a new value (i.e. for a variable

defined as T[:all-overwrite:]* t, the dereferencing

operator *t may not be used on the left side of an assign-

ment statement).

copy = the value of the object currently associated with the varia-

ble may be copied (i.e. for a variable defined as T[:all-

60

 If an overloaded method is named then all the methods with this name are allowed.

Chapter 15 SUPPORT FOR SPEEDOS 154

copy:]* t, the dereferencing operator *t may not be used

in an expression).

Note: If the overwrite and/or copy views do not explicitly ap-

pear in a restriction, but op and/or enq brackets are explic-

itly restricted, then the overwrite and/or copy operations

are considered to be restricted. However with the re-

striction T[:overwrite-op:]* the overwrite operation

can be carried out, although op methods may not be called.

Similar considerations apple with T[:copy-enq:]*.

Multiple views and method names can be combined, using the set union

(+), set difference (-) and set intersection (*) operators. For example

TextFile[:all–Openable:]* tf2;

indicates that all the TextFile methods except the Openable methods can be

used.

3 Calls to the ModelOS Kernel

The ModelOS kernel is not considered to be a module, but at the ModelOS level

it provides a (partly protected) user interface which is considered as an en-

hancement to the instruction set. This interface is accessible to Timor modules

as a built-in quasi-module (called kernel) such that each kernel instruction can

be regarded as an interface method (with parameters where appropriate). If the

instruction is a privileged instruction then a kernel capability (with the corre-

sponding access right set) must be passed as a parameter.

This allows the Timor programmer to "tune" his module to take advantage

of special facilities (mainly security facilities), which are not normally available

in other programming languages. For example if the security of a Timor pro-

gram can be enhanced by information about the security environment in which

his module is intended to execute, he can access the kernel instructions which

provide environmental information (see [6] volume 2 chapter 26 section 1).

3.1 Executing Simple Kernel Instructions

To discover the unique identifier of the user which is currently executing his

module he can write

LongInt myCaller = kernel.current_thread_owner();

or to establish which user owns the file in which his code is currently executing

he can include the statement

LongInt fileowner = kernel.current_file_owner();

Chapter 15 SUPPORT FOR SPEEDOS 155

3.2 Executing Kernel Instructions involving Access and Control Rights

The programmer might want to restrict the thread in which his module is execut-

ing so that it cannot be transferred as a remote inter-module call to some other

node. He can do this by unsetting the permit_remote_node right in the

ModelOS Thread Security Register (see [6] volume 2 chapter 26 section 4). This

is achieved by executing the kernel instruction

refine_tc_rights (Bitlist rights; Boolean primary)

To assist the management of the bit list and thus help eliminate errors, the Timor

environment should provide a number of predefined constants corresponding to

the bit patterns which define the security settings. An appropriate such bit list (in

this case one which has the permit_remote_node unset and the remaining bits

set) might for example be called remoteNode and could be defined in an enu-

meration:

enum TCRsettings {remoteNode, foreignCalls, foreignFileCaps,

foreignCodeCaps, download, upload, subthreads, callBacks,

websites, mail, ftp, otherInternet}

From this a set
61

 of enumeration values might be declared in the following

statement:

instance:

Set<TCsettings> TCset = {TCsettings: remoteNode,

foreignCalls, foreignFileCaps, foreignCodeCaps, download,

upload, subthreads, callBacks, websites, mail, ftp,

otherInternet};

Now we can declare an actual set

const TCset noForeignNode = {foreignCalls, foreignFileCaps,

foreignCodeCaps, download, upload, subthreads, callBacks,

websites, mail, ftp, otherInternet};

 // note that remoteNode is absent

All of this (and constants with other values removed) already exists for the pro-

grammer, so that all he has to do to prevent the current thread from being trans-

ferred to another ModelOS node is to execute the following kernel instruction:

kernel.refine_tc_rights (noForeignNode, true); /* the second

 parameter indicates whether the setting is intended

 for the primary or secondary control rights in the TSR */

61

 actually a collection literal, i.e. a List, see chapter 13 section 4.1.

Chapter 15 SUPPORT FOR SPEEDOS 156

3.3 Normal Execution of Inter-Module and Similar Calls

If a programmer executes an inter-module or similar (e.g. co-module) call this is

normally directly handled by the compiler. Suppose for example that a module

myMod contains a capability for another module yourMod:

type myModType {

instance:

... // instance method definitions

}

and is implemented as:

impl myModType::Impl{

state:

 YourMod** yourMod;

constr:

 ... // initialises myFile

instance:

 op void aCall() {

 ...

 yourMod.aCall(); // an inter-module call

 }

}

then the Timor compiler will generate code to make the inter-module call from

an instance of myModType::Impl to the method aC of the module yourMod. If

aCall has parameters it will take care of these, so that inter-module calls (and

co-module and library calls) are no hassle for the programmer.

3.4 Callback Calls

ModelOS supports callback modules, i.e. modules which can call their caller

back (see [6] chapter 18 section 9, chapter 20 section 8.5 and chapter 28 section

7). To activate a routine in a call back module from a normal module which was

invoked by the same call back module the programmer uses the pseudo variable

(i.e. module) name callback, e.g.

callback.myCallBackRoutine(parameters).

where myCallBackRoutine is the name of a callback routine in the module of

the caller of the current module.

3.5 Direct Execution of Inter-Module and Similar Calls

Situations may arise in which a programmer needs more control over inter-

module and similar calls. In such circumstances it would be a mistake to think

that this can simply be carried out by making a straightforward kernel call to the

Chapter 15 SUPPORT FOR SPEEDOS 157

inter-module call instruction! The reason for this is that inter-module and similar

calls have to deal with two distinct sets of parameters, i.e. those to be passed by

the user to the called module and those needed by the kernel to carry out the call

(e.g. the number of the called semantic routine for the destination module).

The ModelOS rule for passing kernel parameters is that they are passed in a

segment addressed by the calling module's segment register 15
62

. Three kernel

parameters are needed to call the IMC directly are:

a) a module capability for the module to be called;

b) an integer indicating the entry point number of the routine to be called:

c) a boolean parameter indicating whether the caller is requesting read-only or

read-write access to the module's file data.

On a normal inter-module call (see previous subsection) the Timor compiler or-

ganises this, and it can also do this when the user makes a direct inter-module

call as follows:

kernel.IMC(myCap, 11, true);

where myCap is a capability for the module to be called, 11 is the number of the

semantic routine to be activated and true indicates that read-write access is re-

quired. If the programmer does not know the number of the semantic routine he

could theoretically use the corresponding Template Manager for the module to

be called (see [6] chapter 32 section 2.2), but in practice it would be simpler for

the Timor compiler to relax the normal rule by allowing the user to supply the

name of the semantic routine in place of the number, since it must contain the

relevant code anyway.

We now consider how the user parameters are passed. These must be pre-

pared before the direct IMC using the kernel instruction create_imc_params
63

(or in the case of co-module calls and library calls create_pc_params
64

). These

instructions prepare space for the user parameters on the kernel stack of the cur-

rent thread. At the ModelOS level the user can then address these using segment

registers
65

 and at the Timor level the compiler organises this by placing the us-

er's parameters in the appropriate segments.

In the special case under discussion the compiler can save the programmer

from having to address the parameter segments via segment registers and so can

make the following kernel call:

62

 For more details see [6] volume 2 chapter 17.
63

 see [6] chapter 20 section 8.
64

 The difference is that CMCs and LCs can pass pointers as parameters.
65

 see [6] chapter 20 section 6.

Chapter 15 SUPPORT FOR SPEEDOS 158

kernel.create_imc_params(...); /* the user parameters as they

 would appear in a normal inter-module call at the

 Timor level */

The same applies mutatis mutandis to the create_pc_params kernel instruc-

tion.

4 Synchronisation and Semaphores

Dijkstra's original semaphore proposal [30] provides the basis for synchronisa-

tion in ModelOS, as is discussed in detail in Chapters 8 and 21 of [6]. The op-

erations in question include the P (claim) and V (release) operations of Dijkstra,

but further semaphore types have been added, as will become evident below.

At the ModelOS level the semaphore suspend operations have a parameter

(Thread** theThread) which was not envisaged in Dijkstra's original pro-

posal; this is added for security reasons (see Chapter 21 of [6]). It is a capability

for the currently active thread, which is used to suspend the thread. This does

not appear in the following descriptions, but in the ModelOS environment the

compiler must add the appropriate code. For implementations in conventional

systems this extra parameter is not required.

Timor hides the complexity of the operations from programmers by provid-

ing the following built-in types.

4.1 General Semaphores

For this purpose there is a type Sem, which is defined as follows:

library type Sem {

instance:

 op void p(); /* This corresponds to Dijkstra's P operation;

 it claims access to one of the resources controlled

 by the semaphore instance */

 op void v(); /* This corresponds to Dijkstra's V operation;

 it releases access to one of the resources controlled by

 the semaphore */

}

From the viewpoint of the normal programmer this type has a standard imple-

mentation Impl. Its constructor has a single integer parameter which sets the

initial value of the semaphore. When used for mutual exclusion the initial value

should be set to 1.

4.2 Resource Set Semaphores

This semaphore type [31] enhances the general semaphore by advising the caller

Chapter 15 SUPPORT FOR SPEEDOS 159

(as a return value of the V method) of the resource which has been allocated.

library type RsetSem {

instance:

 op Int p(); /* This claims access to one of the resources

 which it controls, indicating in the return value

 which resource has been allocated */

 op void v(Int theResource); /* This releases access to

 the resource indicated in its parameter */

}

The standard constructor has a parameter indicating the number of resources

controlled. The maximum value of this parameter is 64. The actual resources are

numbered 0..63

4.3 Reader-Writer Exclusion

Reader-writer exclusion [32, 33] is achieved by using a semaphore of type

RwSem, defined as follows:

library type RwSem {

instance:

 op void readp(); /* This claims shared reader access

 to the resource which it controls */

 op void readv(); /* This releases shared reader access to

 the resource which it controls */

 op void writep(); /* This claims mutually exclusive

 writer access to the controlled resource */

 op void writev(); /* This releases mutually exclusive

 writer access to the controlled resource */

From the viewpoint of the normal programmer this has a standard implementa-

tion Impl, which provides reader priority and a second implementation called

WriterImpl, which provides writer priority. Neither constructor has parameters.

4.4 Access to Basic Semaphore Variables

In order to allow basic access to synchronising variables, for example in order to

implement priority semaphores or to synchronise variables of other types, the

following can be used.

library type BasicSem {

instance:

 op Int dect(); /* This indivisibly decrements an internal

 counter then returns its value */

 op Int tinc(); /* This indivisibly copies the value of the

Chapter 15 SUPPORT FOR SPEEDOS 160

 an internal counter (to be returned) and then

 increments it. */

}

From the viewpoint of the normal programmer this has a standard implementa-

tion Impl with a single integer parameter, which is used to initialise the internal

counter. The operations and use of this type are described in Chapters 8 and 21

of [6]. In ModelOS they are intended for use in conjunction with the Thread

Scheduler's suspend and activate methods.

4.5 Higher Level Synchronisation

These and other synchronisation mechanisms (see Chapters 8 and 21 of [6]) can

be accessed by Timor compilers via ModelOS library calls (LC instructions)

(see section 3.2. above) and can be used to build further synchronisation librar-

ies (e.g. to support OpenMP applications
66

).

66

 see https://en.wikipedia.org/wiki/OpenMP

 161

 Chapter 16

Why Timor Does Not Need Wildcards

When Java introduced genericity it also introduced the idea of wildcards to solve

a number of problems which were not present in earlier versions of Java, but

which arose as a consequence of introducing genericity [27, 34].

Torgersen et al. [34] gave as a fundamental reason for this that the inclu-

sion of genericity alone "lacked some of the flexibility associated with object-

oriented subtype polymorphism" (p.98). In particular without wildcards (or a

similar mechanism) there would be "no general way to abstract over ... different

kinds of lists to exploit their common properties, although polymorphic methods

may play this role in specific situations".

At first sight the idea of wildcards appears to be very convincing. Yet when

we examined whether this concept should also have a place in Timor we found

that it was not necessary, since it appears that existing Timor concepts (together

with a relatively trivial extension) provide an adequate basis for supporting the

kinds of situations in which Java programmers can apply wildcards.

1 Upper Bounded Wildcards

Under normal OO subtyping rules a List<Circle> is not considered to be a

subtype of a List<Shape>, despite the fact that Circle might be a subtype of

Shape. This is because the normal subtyping rules are concerned with the sub-

types of the collection types, not those of their elements. Thus a List<Shape>

can be assigned or passed as an argument to a Collection<Shape> or even to

an Ordered<Shape>, but a List<Circle> cannot.

This point is unfortunate, because it prevents useful applications. Bracha

points out in [27] that because normal subtyping rules are concerned with the

subtypes of the collection types, not those of their elements, it is not possible to

assign, say, a List<circle> to the element supertype, e.g. a List<shape>, de-

Chapter 16 WHY TIMOR DOES NOT NEED WILDCARDS 162

spite the fact that allowing assignments of this kind creates no problems in cases

where the method would merely read shapes from the list.

In order to provide a better understanding of Timor's alternative approach,

it is helpful first to understand the issues in more detail than the above short out-

line suggests.

1.1 Why Is a List of Students not a Subtype of a List of Persons?

It becomes clear why a List<Student> is not a subtype of a List<Person> if,

for example, we try to insert an element of type Person into a List<Student>

instance via a List<Person> variable. The following (incorrect) Timor example

illustrates the problem.

Person* p = new Person&s.init();

p.name = "fred";

p.dob = "1/1/1981";

List<Student*>* sList = new List&s<Student*>.init();

// insert some students

List<Person*>* pList = sList;

pList.insert(p); // inserts a Person into a student list

for (s in sList) {if (s.uniName = "Oxford") ...}

This example contains three errors.

1) In real Timor the compiler would flag an error in the line containing the

assignment pList = sList, because a List<Student> is not a List

<Person>. This compile time error prevents the following two errors from

occurring at run-time, and is based on the (correct) assumption that a col-

lection of elements of type E is not a supertype of a collection of E2, where

E2 is a subtype of E. However if the programmer who naively wrote the

above code did not realise this, and if the compiler were simply to flag this

as an error this does not explain to the programmer why a List<Student>

is not a List<Person>.

2) If the compiler writer were not aware of the error and incorrectly allowed

the program to compile, the next line would cause a run-time error, because

a run-time check would discover that the parameter is not of an appropriate

type (i.e. in this example it is not a reference for a Student or a subtype

thereof).

3) Suppose now that the run-time system were faulty and did not raise a run-

time error as described in point 2, then we would inevitably have a run-time

error in the next line. In the course of iterating through sList we would

reach p and because this is a Person without any Student details such as

uniName it would have to generate a run-time error!

Chapter 16 WHY TIMOR DOES NOT NEED WILDCARDS 163

A little consideration of the example shows that the error described in 3)

only occurs if a new element is inserted into the collection via a supertype varia-

ble. It does not necessarily arise with all write operations at the supertype level.

For example removing an element from a list (or clearing an entire collection)

would be harmless in this respect.

The above example in fact shows that (a) it is unsafe to allow elements to

be added via a "supertype" variable, and (b) it is unsafe to allow methods to be

called where dynamic binding checks would fail.

This situation is unfortunate. If we simply draw the conclusion that the as-

signment of a collection of subtype elements to a collection variable of super-

type elements is always forbidden, that would rule out many useful situations

where no errors would occur and in which the code could be used without caus-

ing a run-time error. That raises the question of how a compiler might allow

programs to be accepted which avoid the errors described above, and yet appear

to break the normal subtyping rule.

1.2 The Wildcard Solution

To make this possible Java introduced upper bounded wildcards, in the form

List<? extends Shape> to identify those variables or parameters to which

such assignments could safely be made, thus modifying the subtyping rules. In

the following we refer to such generically defined variables and parameters as

"element subtype assignable".

1.3 The First Timor Solution: Generic Co-Types

In fact it is quite possible in Timor to achieve the aim behind this by using co-

types, as we have already shown in chapter 11, section 15. That solution elimi-

nates the need for upper bounded wildcards in cases where the co-type adjust-

ment technique automatically produces an additional method which provides the

required functionality and has the correct parameter type.

However there are situations in which an appropriate method cannot be au-

tomatically generated, due to the nature of the problem. Conversion of types is

such a case. The collection co-types in the TCL provide standard makers which

can convert any collection of elements to any other type of collection of ele-

ments, where the elements have the same type. For example a List<Person*>

can be converted into a SortedSet<Person*> using the following maker
67

, de-

fined generically in SortedSet&s as follows:

op TheType convert(Collection<ELEM>*** c1) throws NullEx;

67

 We ignore the issue of choosing an implementation for the converted result to keep the

issue as simple as possible.

Chapter 16 WHY TIMOR DOES NOT NEED WILDCARDS 164

When actualised using Person* elements, there is no problem in converting say

a List<Person*> into a SortedSet<Person*>. To carry out the required

conversion the application might use the code fragment:

List<Person*> myPersonList = ...;

SortedSet<Person*> myPersonSortedSet =

 personSortedSet&s.convert(myPersonList);

The standard co-type variable personSortedSet&s exists automatically and

has the type SortedSet&s<Person*>.

However if the application programmer wishes to convert a List

<Student*> into a SortedSet<Person*>, he cannot use this method, despite

the fact that Person is a supertype of Student, because it would break the nor-

mal subtyping rule.

What alternatives does he have in the context of co-types? He can only use

a further co-type of SortedSet, because only makers in SortedSet can do that.

He might attempt to define a new co-type which extends (or includes, but

does not adjust!) the actualised co-type SortedSet&s<Person*> as follows:

type MySortedSet&s<Person*> expands SortedSet<Person*>{

extends: SortedSet&s<Person*>;

maker:

 op TheType convert(Collection<Student*>*** c1)

 throws NullEx;

}

This overloads the original method, replacing the parameter with one which will

achieve the required aim. So far the attempt is valid, and it would then be possi-

ble to provide a new implementation along the following lines:

impl MySortedSet&s<Person*>::Impl {

state:

 ^SortedSet&s<Person*> mySortedSetCoType =

 SortedSet&s<Person*>::Impl();

maker:

 op TheType convert(Collection<Student*>*** c1)

 throws NullEx{

 /* new implementation code or the code copied from the

 original */

 }

}

This would also be valid. The re-use variable would cause all the methods from

the original co-type to be matched. The matched methods thus become imple-

Chapter 16 WHY TIMOR DOES NOT NEED WILDCARDS 165

mentation code for the corresponding interface methods in the new type. But the

overloaded convert method cannot be matched for re-use because of the modi-

fied parameter type. This is unfortunate, since the code would achieve the aim,

and could therefore be copied into the body of the new method.

Since our aim of achieving the equivalent of upper bounded wildcards in-

cludes the aim of re-using code, and since the development of new co-types is

time consuming, we conclude that this is not an adequate solution. Furthermore

such a solution is not a general solution for the basic problem.

1.4 Using Restricted Variables and Parameters as an Alternative to

Upper Bounded Wildcards

This alternative Timor approach relies on the fact that the methods which can be

called via a variable (or parameter) can be restricted to a particular view or

views, in effect forming access rights which can be enforced by the compiler

(see chapter 15 section 2). Although this technique was introduced into Timor

primarily for protection purposes, it is relevant to the present discussion.

Some views which can be used in restrictors are standard. For example to

enforce read-only access to an instance via a particular variable or parameter the

standard enq view can be used, which then only allows methods defined as en-

quiries to be invoked. To ensure that protection cannot be side-stepped simply

by then assigning the instance to a further variable or parameter which does not

have a restricted view, Timor checks that assignments are not permitted to vari-

ables or parameters with fewer restrictions than that from which an instance is

being assigned.

Using the enq view would in fact be sufficient to solve the conversion

problem described above, if we were to combine it with a modification of the

subtyping rule. However, that does not provide a general solution for the issue.

As we saw in subsection 1.1 all that is really necessary to solve the general prob-

lem is to ensure that elements are not added and that methods are not invoked

which would fail because of the dynamic binding rules.

1.5 The Restrictor OOPS

In fact it is possible to restrict a co-type (or a normal type) from inserting ele-

ments into a collection by using the restrictor [: all – insert :], which allows all

the methods of the variable (or parameter) to be invoked except the insert

methods
68

. This would permit all the methods, including for example remove,

loopInit and getnext (but excluding all the insert methods) to be invoked.

We therefore introduce this as a new view restrictor, which for convenience we

68

 see chapter 15 section 2.

Chapter 16 WHY TIMOR DOES NOT NEED WILDCARDS 166

call oops (an expression for surprise or apology), which indicates that the asso-

ciated variable or parameter is "element subtype assignable". Like the enq view,

this is not explicitly defined as a view, because, like enq, the methods involved

change from type to type.

Let us now return to the example in section 1.1, where the final three lines

were:

List<Person*>* pList = sList;

pList.insert(p); // inserts a Person into a student list

for (s in sList) {if (s.uniName = "Oxford") ...}

As it stands this is still an error, but if the programmer had written the first of

these lines as

List<Person*>*[:oops:] pList = sList;

then it would no longer be an error. On recognising the error in the original first

line, the compiler could of course suggest to the programmer that his error could

be corrected by using the oops restrictor.

2 Unbounded Wildcards

In Java unbounded wildcards are supported in the form Collection<?>, which

is considered to be the supertype of all collections, or for example List<?>, the

supertype of all lists, etc. The idea is that a collection with some unknown ele-

ment type can be declared as a variable or passed as a parameter, and that collec-

tion methods which are independent of the type of the element (e.g. methods

which clear a collection or return its length) can be invoked on an instance of

some real (actualised) collection which has been assigned to such a variable,

without the actual type of the elements being known at that point in the program.

Furthermore, elements from such a list can be read (as instances of the Java type

Object) but new elements cannot be inserted, because the actual type of the ob-

jects is unknown. This suggests that the unbounded wildcard Collection<?> in

Java can be viewed as a special case of an actualisation of an upper bounded

wildcard, i.e. Collection<? extends Object>. This observation provides the

clue as to how Timor can implement an equivalent mechanism.

2.1 Handles and Unbounded Wildcards

Torgersen et al. motivate the idea of unbounded wildcards with an example in

which the objects in a List can be cleared (or for example the length of the list

interrogated), since these are methods which require no knowledge of the actual

element type. In fact they describe the type List<?> as

 "a supertype of List<T> for any T, which means that any type of list can

be assigned into the list field. Moreover since we do not know the actual ele-

Chapter 16 WHY TIMOR DOES NOT NEED WILDCARDS 167

ment type we cannot put objects into the list. However, we are allowed to read

Objects from it — even though we do not know the exact type of the elements,

we do know that they will be Objects." [34].

In Timor the type Handle is the supertype of all references, capabilities and

values of all types, and is itself a type. Unlike Java's unbounded wildcard it is

not a generic feature, and unlike Java's class Object it has no methods. The ini-

tial consideration in introducing this type into Timor arose from the aim of al-

lowing operating system software to be developed (see chapter 7, section 8).

However, the Timor type Collection<Handle>, if used together with an ap-

propriate restrictor, can in practice be used in Timor to achieve almost all the

aims of Java's Collection<?>, as we now demonstrate.

First, Timor collection methods such as size and remove can be invoked

on any collection instance underlying a Collection<Handle>[:oops:], as

was discussed in the previous section.

Second, in conjunction with this restriction it can serve as the destination of

an assignment of any collection instance, and consequently it can be regarded as

the "supertype" of all collections, analogously to Collection<?> in Java.

Third, any element of such a collection can be read, can be assigned to a

Handle variable and can be cast to its actual type. This follows in that Handle is

a supertype of every type.

Here is an example:

Person* p = new Person&s.init("fred");

// create a new Person object

List<Person*>* myPersonList = new List&s<Person>.init();

// create a Person List

myPersonList.insert(p);

// insert p into the list

List<Handle>[:oops:]* myListSupertype = myPersonList;

// assign the list to a restricted handle list

Int i = myListSupertype.size();

// then discover the size of the list

Handle firstEntry = myListSupertype.get();

// recover the first entry in the list

cast (firstEntry) as {

 (Person myPerson) {...}

// try to cast it to a type Person

}

This demonstrates that Java's unbounded wildcards can be easily simulated

Chapter 16 WHY TIMOR DOES NOT NEED WILDCARDS 168

in Timor without the introduction of wildcards.

2.2 Further Aspects of Working with Handles

Since Handle has no methods, the only thing which it can usefully achieve is to

store an instance into some structure (e.g. a directory) and/or to cast it to a type

which has methods.

A collection of some specific type can be assigned to say a Collection

<Handle> variable restricted to [:oops:] as follows:

Collection<Handle>[:oops:]* myHandles =

 new List&s<Person*>.init();

and the type could be retrieved using a cast statement as follows:

cast (myHandles) as {

 (List<Person*>[:oops:] personList) {...}

 (List<Shape*>[:oops:] shapeList) {...}

 else ...

}

At first sight it perhaps appears that the oops restriction is necessary in the body

of the cast statement (as shown), in view of the restriction rule that an instance

cannot be assigned from a restricted variable to another variable unless the re-

striction on the latter includes at least that of the former.

However, casting is not the same as making an assignment, and the use of a

cast ensures that code executed within the cast body is only executed if the cast

condition is true. Hence we can, without risk, remove the restrictions within the

cast, as follows:

cast (myHandles) as {

 (List<Person*> personList) {...}

 (List<Shape*> shapeList) {...}

 else ...

}

This then raises the further issue whether say a List<Student*> which has

been assigned to a Collection<Handle> can be cast to a List<Person*>.

Since this would create the risk that within the cast statement Person references

could be inserted into the list, the cast can only be successful if the restriction is

applied, i.e.

cast (myHandles) as {

 (List<Person*> personList) { /* this cast fails if

 myHandles is a List <Student*> */}

 (List<Person*>[:oops:] personList) {/* this cast

Chapter 16 WHY TIMOR DOES NOT NEED WILDCARDS 169

 succeeds if myHandles is a List <Student*> */}}

}

The general rule is that a cast will only succeed where a similar assignment

would also succeed.

2.3 Casts Involving Co-types

Bracha motivates unbounded wildcards with an example in which the objects in

a Collection<?> can in turn be manipulated in some way using the methods of

Java's type Object (e.g. println). We now consider how Braccha's example

translates to Timor.

A significant difference between Java and Timor comes to play in this ex-

ample. Whereas in Java println is a method of Object, in Timor there is noth-

ing quite equivalent to Object, since Handle has no methods. Instead, generally

useful methods such as println are included in views.

A view can be inherited in any type, including co-types. The method

println is defined in a view StandardIO which is typically included in co-

types designed to carry out input/output operations for their expanded type (see

chapter 11, section 15). Standard co-types for input-output are typically included

in co-types which have the suffix &io.

In order to print an instance of an unknown type (assigned in Timor to a

Handle) we must first cast it to the view StandardIO in its co-type, since there

is no guarantee that this has been inherited in the standard &io co-type. A nor-

mal cast statement will not achieve this for us, for two reasons. First, it will cast

us to the type of the instance, not its co-type. Second, because we do not know

the type of the objects, we cannot cast it at all. Consequently we need a cast

statement which will both find the co-type and will cast to its StandardIO view.

This is achieved in a second form of cast statement, known as a co-cast.

The following example assumes that a collection of handles is passed to a meth-

od which prints each entry in the collection in turn. It further assumes that the

appropriate method is held in a standard input-output co-type with suffix &io.

enq void printCollection(Collection<Handle>[:oops:] c) {

 for (Handle h in c) {// iterates through each handle in turn

 cocast (Handle h, h&io) as {/* h&io is a pseudo-variable

 which refers to the (unknown) standard io cotype of h */

 (StandardIO p) {h&io.println(p);}

 // the cast is to the view StandardIO in h&io

 }

 }

}

Chapter 16 WHY TIMOR DOES NOT NEED WILDCARDS 170

3 Lower Bounded Wildcards

Lower bounded wildcards can be seen as the dual of upper bounded wildcards,

allowing a supertype of a known type to be assigned to a variable or passed as a

parameter. In this section we consider whether a similar facility is needed in Ti-

mor.

3.1 Comparators and Co-Types

Lower bounded wildcards are motivated in [27, 34] by comparators, which are

used in Java to provide flexible criteria for making comparisons between the

elements of generic objects. The actual example used in both papers is a tree set,

which, in the words of Bracha's tutorial, "represents a tree of elements ... that are

ordered" (see [27], p.19). The comparator is needed in order to provide a flexi-

ble criterion for sorting the elements of the tree set into a defined order.

In Timor TreeSet is a possible implementation of the type SortedSet,

which can be flexibly ordered using the generic static function parameter PRE-

CEDES, as is described in detail in chapter 14, section 3.

Furthermore, Java comparators can be totally eliminated by the use of co-

types. In a further example, which motivates the need for lower bounded wild

cards in Java via comparators, Bracha discusses the Java Collections method

T max(Collection<T> coll)

which returns the maximum element in the collection coll. This method ap-

pears in Java's Collections rather than simply as an instance method of

Collection. The problem would simply disappear in Timor if, for example, a

method max were defined as an instance method of the TCL's type Collection,

as follows:

template <ELEM>

type Collection {

instance:

 ...

 enq ELEM max()throws NullEx();

}

The implementation of this would simply use a normal comparison operator

(e.g. <) to compare the elements. This works independently of the type of the

elements, because of the rules described in Appendix II section 5 (which de-

scribe the defaults used by comparison operators) and section 9 (which describe

how binary methods in co-types can be used to override the default values).

However, using this approach could lead to a large number of methods be-

ing added to the basic Collection methods, resulting in lack of clarity, and also

Chapter 16 WHY TIMOR DOES NOT NEED WILDCARDS 171

making it difficult to add further methods in a component-oriented way. To

avoid these problems Timor adds a further category of methods to co-types, in-

dicated by the keyword library
69

. Like other co-type method categories these

can appear in any co-type, making it easy for applications (and for software

component developers) to add new library methods. However there is a standard

library co-type suffix &lib for standard libraries, in which max and similar

methods typically appear:

template <ELEM>

type Collection&lib expands Collection {

library:

 enq ELEM max throws NullEx();

 ...

}

Similar considerations apply to other methods in Java's class Collections.

3.2 Type Matching and Casts

Bracha provides a further motivation for lower bounded wildcards which is un-

related to comparators, i.e. a method writeAll which iterates through a generi-

cally defined collection and "sinks" the contents into a generically defined sink,

returning the last element to the caller of the method. Lower bounded wildcards

are needed to ensure that the types of the two generic parameters are correctly

matched. As Bracha himself hints, this is a somewhat unrealistic example

(p.19).)

In part the unrealistic nature of this example, the lack of a clear definition

of the purpose of the example together with the fact that there are major struc-

tural differences between Java and Timor, make it difficult to present a one-to-

one translation of the problem. Instead we have concentrated on what we con-

sider to be the central issue, viz. that the content of a generically defined input

parameter (in Bracha's example a Collection<T>) can be output to a generical-

ly defined output parameter involving a supertype of the generic parameter

(Bracha's Sink<? super T>).

Exactly this can be achieved in Timor by invoking makers based on

Collection&s. To help make the comparison clearer we have avoided the use

of the covariant adjustment keyword TheType, replacing it by actual types:

maker:

 enq Collection<ELEM> convert

69

 These are not directly related to modules defined as library types (see chapter 3 sec-

tion 3.

Chapter 16 WHY TIMOR DOES NOT NEED WILDCARDS 172

 (Collection<ELEM>***[:oops:] c) throws NullEx;

Using this maker method in the appropriate adjusted co-type, one could for ex-

ample copy the content of a List<String> into a Collection<Handle>, as

follows:

Collection<Handle>* handleColl;

List<String>* stringList = new List<String>::LinkedImpl();

... // put strings into stringList

handleColl = handleList&s.convert(stringList);

The only substantial difference from the Java example is that this method returns

a Collection<Handle>* rather than the last element in the collection. Howev-

er, it is not problematic in Timor to read out the last element and cast it.

Finally, we note that in Timor it would be easy to retrieve a List

<String>* from an appropriate Collection<Handle>* via a cast statement. In

Java this is not possible, because through the use of erasure as the generic im-

plementation technique all generic information is erased at run-time. However in

Java it would be possible to define a method for achieving an almost equivalent

effect by using a lower bounded wildcard.

3.3 Complementing Casts with Restrictions

There are however some situations in which the Timor mechanisms which we

have so far found useful are insufficient to allow a method to be adequately de-

fined generically in a situation where lower bounded wildcards could be used.

Consider a method, which in Timor one would expect to appear as a maker in a

co-type, viz. a method which creates a collection of some specified type by se-

lecting elements of this type out of a collection of elements of a supertype. In the

following example we wish to create a List<Student> by iterating through a

List the elements of which are of some supertype of Student (e.g. Person

and/or Handle).

Such a method could of course be defined, but with the techniques so far

mentioned it could not be defined generically. Here is how a non-generic ver-

sion might look:

enq List<Student> convert(Collection<Handle> c){

 List<Student> myList = List<Student>::LinkedImpl();

 {for (Handle h in c){

 cast (h) as {

 (Student s){myList.insert(h)}

 return myList;

 }

}

Chapter 16 WHY TIMOR DOES NOT NEED WILDCARDS 173

The key restriction which applies is that the input parameter must be "element

supertype assignable" – in this case a collection of a supertype of Student.

That can be easily checked by the compiler if we have a restriction to ad-

vise it of this condition. Such a restriction has the name wow (an exclamation

expressing admiration), allowing us to define the method generically in List as

follows:

enq List<TT> convert(Collection<TT>[:wow:] c);

An implementation in List&s could be as follows:

enq List<ELEM> convert(Collection<ELEM>[:wow:]*** c){

 List<ELEM> myList = List<ELEM>::LinkedImpl();

 for (Handle h in c){

 // Any element of any type can be treated as a Handle!

 cast (h) as {

 (ELEM s){myList.insert(s);}

 }

 return myList;

 }

}

The relevant rules for the cast restriction are that:

– only "element supertype assignable" instances of the actualised type can be

assigned to variables or parameters restricted by the wow restriction.

– variables and parameters restricted by [:wow:] can only be used in a cast

statement, and only then without the [:wow:] restriction.

The reason for restricting its use in cast statements (in which the normal

type rules apply) is to ensure that the type rules are always upheld. This rule

would for example prevent a programmer from writing a statement such as

List<Student>[:wow:] studentlist = List<Person>::Impl();

With the rule that cast statements are necessary this statement would be flagged

as a compile time error if it appeared outside a cast statement. If the programmer

were to attempt to achieve the same aim in a cast statement, as follows,

cast (List<Student>[:wow:] studentlist) as

 (List<Student> slist) {slist = List<Person>::Impl();}

 (List<Person> plist) {plist = List<Person>::Impl();}

then the first cast option would be flagged by the compiler as an illegal assign-

ment according to the normal subtyping rules, while the second would be legal.

Notice that the restriction requires either that the entire instance underlying

the wow variable or parameter is cast (as just illustrated) or that the individual

Chapter 16 WHY TIMOR DOES NOT NEED WILDCARDS 174

elements are cast, as in the convert example above.

The advantage of the wow restriction is that the programmer knows that the

instance behind the variable must have elements which are supertypes of the

statically defined elements, thus limiting the list of cast options.

 175

 Chapter 17

Concluding Remarks

Chapter 1 indicated that Timor has been designed with four primary aims in

mind, i.e.

i) to provide a suitable programming language for developing application

programs for the ModelOS system;

ii) to provide a programming language which facilitates the development of

software components that can be easily re-used in many individual systems,

both as large and small components;

iii) to eliminate certain problems which arise in the context of other popular

object-oriented programming languages;

iv) to provide strong support for database applications.

In this final chapter we briefly review how Timor achieves these aims.

1 Support for ModelOS Applications

Timor supports the idea of direct addressability in a persistent virtual memory in

the simplest way possible, i.e. by simply ignoring the issue. The programmer

just assumes that any value, object or module is persistent and can be addressed

directly. (ModelOS is responsible for ensuring that this is the case.)

ModelOS requires Timor to support the idea of information hiding in a very

strict way, based on entirely procedural interfaces, in order to ensure that some

of its key protection and synchronisation mechanisms function correctly. In fact

information hiding units are the only basic structure in Timor; there is no sepa-

rate mechanism for writing programs nor for organising data structures into

files
70

. Nevertheless its idea of abstract variables (see chapter 5) offer the pro-

grammer a very comfortable mechanism for achieving information hiding.

70

 If Timor is to be used in conventional systems conventional programs and files can be

hidden behind a module interface.

Chapter 17 CONCLUDING REMARKS 176

Timor makes at least three important contributions to ModelOS's aim of

providing a very secure system:

• It distinguishes between reader and writer methods, via enq and op key-

words.

• It introduces qualifying types with bracket routines (see chapter 10).

• It permits restrictors to be associated with variables and parameters (see

chapter 15, section 2).

 Distinguishing between reader and writer methods is particularly im-

portant to support both the synchronisation of threads and various ModelOS se-

curity mechanisms.

Qualifying types inter alia provide a mechanism which allows the pro-

grammer to confine information to a module, without letting it escape via inter-

module calls (thus providing a general solution to one of the most serious prob-

lems facing the modern computing industry) and it also allows the same mecha-

nism to be used for calls between the individual objects in a single module.

Similarly, restrictors allow programmers in effect to reduce access rights in

capabilities but also (by associating them with individual variables and parame-

ters within a module) to ensure better access control even at the programming-

in-the-small level.

Chapter 15 describes how Timor also provides support for other aspects of

the ModelOS operating system at a technical level. For example Timor can be

used to call the ModelOS kernel instructions directly, and thus allows it to oper-

ate as a lower level language than is usual in many other programming lan-

guages, including the setting and reducing of access rights and finer control of

the invocation of modules as well as access to synchronisation variables.

2 Flexible Support for the Design and Development of Software Compo-

nents

The use of a single information hiding structure to create value variables, objects

and modules allows a programmer (or better, a software component manufactur-

er) to create standardised small variables which can be used in many frequently

occurring situations. For example it becomes possible to standardise such items

as names, addresses, telephone numbers, dates, passport numbers and much

more, and then build these into larger level items, such as persons, telephone

directories, marriage documents, etc.

There are advantages in developing these small units as separate compo-

nents. First, assuming that software component manufacturers sell such items off

the shelf (and provide the buyers with specifications) this would reduce the work

Chapter 17 CONCLUDING REMARKS 177

of applications designers and programmers, and – just as important – it would

save the need for applications programmers to test them (which becomes the job

of the original component manufacturer).

Second, the component manufacturer can afford to spend more time than

the average applications programmer on a particular task and thus provide a

more flexible and more complete product. A good example to illustrate this

point is a date item. Often applications programmers, who are usually under

pressure to complete their work quickly, will just produce a trivial item, without

thinking of leap years and century changes, etc. Those old enough will recall the

panic which occurred throughout the software industry as the beginning of the

21
st
 century approached! And the fact that the information hiding modules have

procedural interfaces (which of course can be partly hidden by the idea of ab-

stract variables (see chapter 5)) means that not only the actual data (in this case

the date) can be programmed, but for example enquiries which calculate the day

(Monday to Sunday) on which a future or past date occurs, etc. can be provided.

The idea of co-types as such is also a very flexible idea for adding compo-

nents. These are add-on units which can provide useful extra facilities, such as

an enquiry which calculates the number of days (and hours and minutes and

seconds) between two dates, etc. Small components can be quite complicated

and are very useful.

Components provide a very important way of standardising software. Giv-

en this approach, many application systems can be built largely from standard-

ised units. This applies not only to the very small components which we have so

far discussed, but also to composite objects such as person records, which, when

declared as objects, can cross-reference each other (e.g. in a spouse field) and

can be further organised into more substantial structures, e.g. a family tree.

Similarly they can reference separate modules (e.g. a birth certificate, a marriage

certificate), which could also be accessed remotely (via remote inter-module

calls) in various government departments and in company databases.

3 Improving the Object Oriented Paradigm

Here are some of the improvements which Timor makes to the OO paradigm
71

.

i) Co-Types:

Timor's insistence on declaring only instance methods in types and defining co-

types as instance methods which function as class methods, binary methods and

makers (application oriented constructors) and even as input-output add-ons

71

 It is clear that some purist OO fans will not regard some of these as "improvements",

but may see them as "heretical".

Chapter 17 CONCLUDING REMARKS 178

solves a number of issues which can arise in the conventional OO paradigm.

Here are some of them:

a) a number of issues which arise with binary methods to which Bruce et. al.

have drawn attention [26];

b) the problem of combining both application-oriented and implementation-

oriented parameters in conventional constructors [3].

Timor also shows how a co-type hierarchy can be automatically adjusted to pro-

duce a covariant parallel hierarchy for the subtypes of the original base type.

ii) Separating Types and Implementations:

The separation of types and implementations leads to the concept of re-use vari-

ables, which provide an efficient mechanism for re-using code, even in imple-

mentations of formally unrelated types (e.g. re-using a queue implementation in

a double-ended queue – or vice versa –, although these do not have a genuine

type-subtype relationship).

iii) Views:

Timor distinguishes views from abstract types, allowing them easily to be incor-

porated into larger objects in an adjectival way (often based on adjectives which

end in "-able", such as switchable, openable, etc.

iv) Types which are often difficult cases in normal object orientation:

Timor provides mechanisms (e.g. 'parts') which simplify the modelling and im-

plementing of problem areas such as repeated inheritance and diamond inher-

itance.

4 Support for Database Applications

The vast majority of real world applications are based on large – and ever grow-

ing – databases (e.g. in government departments and in commercial organisa-

tions). For this reason an important aim of Timor has been to provide an ade-

quate support for database applications, based on the Timor Collection Library

(TCL).

Unlike Timor, most other OO programming languages are not designed as

persistent programming languages. This issue has been clearly emphasized in

the work of groups around Malcolm Atkinson and Ron Morrison [35], which

have emphasized the need for "persistent programming", developing a number

of persistent programming languages starting with PS-Algol. However, they did

not have the advantage of a persistent virtual memory system such as ModelOS.

Consequently they aimed to create a persistent programming language which

runs in a non-persistent environment. As a result, their emphasis was quite dif-

ferent from that found in Timor. In contrast, Timor is fortunate enough to be

Chapter 17 CONCLUDING REMARKS 179

able to ignore some of the problems which they tackled, and the TCL is pro-

grammed without the constraints which faced them.

We now consider how Timor supports database programming.

4.1 Remote Databases

In view of the ModelOS approach to remote processing, which is achieved au-

tomatically via remote inter-module calls, the programmer can ignore this issue

entirely.

4.2 Separating Types from Implementations

An advantage of Timor from the viewpoint of databases is that type definitions

in the TCL present a logical interface which is used in application programs to

access a database independently of how it is actually organised, while imple-

mentations of a type provide the actual accessing mechanisms. For the same

type various different implementations can exist, and these can be equivalent to

'normal' programming structures which computer science students learn in a data

structures course, e.g. arrays, trees, hash tables, linked lists, circular lists, doubly

linked lists, etc. but implementations can also provide structures typically asso-

ciated with file systems and database systems, such as indexed sequential, B-

trees, etc.

Since application program accesses to a database are all framed at the type

level, it is possible to convert a TCL database from one implementation to an-

other without needing to change the application programs which use it. This is

easily achieved using the convert maker (see chapter 13, section 3.1).

It is also possible of course to use different implementations for different

databases containing the same type of elements.

4.3 Kinds of Database

4.3.1 Relational Database Model

While Timor is not based on the relational database model
72

 [36], it can be used

to create persistent files corresponding to tables (relations), in which its records

can be seen as tuples. Using Timor's 'selection by predicate' facility for subcol-

lections (see chapter 13 section 4.2) new relations can be created which select

specific tuples from an existing relation (file) according to defined criteria, and

using the 'selection by predicate' facility for elements an individual tuple can

similarly be selected (chapter 13 section 4.3) which conforms to specified crite-

ria.

72

 see https://en.wikipedia.org/wiki/Relational_model

Chapter 17 CONCLUDING REMARKS 180

It would be possible for an SQL
73

 (or similar) module to be developed

which builds upon these facilities and on the collection operators (chapter 13

section 4.5 and 4.6) to create a database query language environment.

4.3.2 Network Databases

Similarly Timor is not explicitly oriented to the network database model
74

, but it

has basic facilities which can be used to support such a database. In particular

the explicit use of references for objects (see chapter 4 section 3; Appendix I)

provides the necessary base for a network model.

4.4 Flexible Database Record Entries

One further advantage of Timor over other OO languages is that it offers a new

construct, viz. attribute types (see chapter 9). This harmonises well with the

modelling of a dynamically changing world, since it provide mechanisms which

easily allow the objects in a database to change in the database as the real items

(persons, cars, books, etc.) change or are updated in the real world. A person can

become a student then later an office worker, can marry, etc. Similarly a car can

be sold to a new owner and can have accidents and (which are attached as new

accident records) etc. A library book can be moved from one library branch to

another and/or can have a history of borrowers which can be crossed referenced

to produce lists of readers, etc. The possibilities are endless.

4.5 Persistence

Because Timor (in conjunction with ModelOS) is designed as a persistent sys-

tem it has the important advantages (a) that it simplifies programming, because

it does not need recourse to a separate file system, and (b) for the same reason it

is inherently more efficient.

4.6 Big Data

The features mentioned in this section suggest that a combination of ModelOS

and Timor would be helpful in the world of big data
75

. We have already men-

tioned remote databases. Persistence means that algorithms execute directly on

(big) data in the main memory. The separation of types and their implementa-

tions makes it relatively easy to design (and experiment with) implementations

suited for big data, e.g. using gather-scatter techniques
76

) without modifying the

applications which use the data. Parallelism is achieved within a node by the use

73

 see https://en.wikipedia.org/wiki/SQL
74

 see https://en.wikipedia.org/wiki/Network_model
75

 see https://en.wikipedia.org/wiki/Big_data
76

 see https://en.wikipedia.org/wiki/Gather-scatter_(vector_addressing)

Chapter 17 CONCLUDING REMARKS 181

of multiple threads
77

, and between nodes by the Timor/ModelOS remote inter-

module call facilities. Pragmas (see chapter 2 section 6) based on OpenMP
78

 or

using similar techniques can be added at the compiler level to support multi-

platform shared-memory multiprocessing programming. Individual files in

ModelOS can be up to 4 TB in length (see [6] volume 2). Since the translation

from virtual address to page address can be individualised for each file the ad-

dress translation can be optimised for large files (e.g. with pages of 128 MB or

more), and a pre-paging strategy could be used to increase efficiency of the pag-

ing process.

Finally, all the extensive support mechanisms in ModelOS/Timor are avail-

able in the context of big data, as of course in all other ModelOS/Timor applica-

tions.

77

 At the hardware level the implementation of ModelOS in [6] describes a single proces-

sor system (to keep the description simple), but in practice tightly coupled multi-

processor systems could also be designed and built.
78

 see https://en.wikipedia.org/wiki/OpenMP

 182

 APPENDIX I

A Timor Object Model

In this appendix a partial model is presented which hints at how a Timor com-

piler might organise values, objects and their references, and capabilities for

files at run-time. It is not the intention to provide a detailed description, but

merely to present a simple model. We begin by describing how instance records

can be organised. It is assumed that the reader has familiarised himself with the

various features of a Timor module, including the terminology used in the vari-

ous chapters of the book.

1 Instance Records

An instance record is a run-time data structure which corresponds to an imple-

mentation of a structured type.

Because a structured type can have different implementations (which can

co-exist in a single program) the space occupied by different instances of the

same type can vary in size. For example consider some possible implementa-

tions of a type Date. An actual Date instance might be represented by three in-

teger variables, or by a single string variable, or an array of string variables, etc.

Consequently the compiler cannot pre-allocate the exact amount of space needed

by an instance of a type. Since this issue should remain invisible to program-

mers, the run-time model for an instance of a structured type is that its content is

represented by a fixed size internal pointer (not visible to programmers) which

locates the actual instance record (that can vary in size from implementation to

implementation). The instance record (see Figure AI.1) includes

• a methods pointer, which points to the implementation code of the type (i.e.

a list of instance methods),

• an array of slots which describe its state. Each slot is a 64-bit word which

holds a pointer to a value, an object, or a file capability (see chapter 4).

APPENDIX I A TIMOR OBJECT MODEL 183

The code of the instance methods is shared by all instances of the type

which have the same implementation. Hence several instance methods in the

same module may point to the same method list.

Since a structured type can be a component of some other structured type a

slot in an instance record can point to a further instance record. For example a

Person record might contain a Date, so that a slot in the Person instance record

will point to a Date instance record. (To keep the diagrams simple this is not

illustrated; also, in the diagrams all instance records look the same, but in fact

the slots vary corresponding to the data declarations in the state data.)

The slots representing the state of the instance point to entries in a general

heap for the module. The individual items in the heap may be values, pointers to

an object or capabilities. (Optimisations are here possible, e.g. simple values

may be directly held in the instance record, as is illustrated in Figure AI.2.)

When a type is instantiated, the constructor for the selected implementation

of the type creates a new instance record and links this into a tree of instance

records which together represent the state of the entire module. From the view-

point of this model Timor makers are simply instance methods and have no spe-

cial role in the object model. Since abstract variables are defined as a pair of

methods, they too have no special role in the model.

2 The Object Table

An instance of a type can be declared as a reference for an object, using the sin-

gle * notation. In this case the constructor creates an entry for an object in the

module's object table and creates a reference to this in the appropriate instance

record of the caller. Multiple references can point to the same object table entry,

thus allowing the object to be shared, see Figure AI.2.

When assignment operators are applied to references, only the reference is

copied. When the assignment operator is applied to a value (including a derefer-

enced object reference such as *spouse) a deep copy of the value is made. For a

basic value this means that the value itself is copied to the slot indicated by the

Internal Pointer

Instance Record

Methods Pointer

Slots containing

pointers to items

representing the

state of the

instance

List of Instance

Methods for this

implementation

Figure AI.1: An Instance Record for a Structured Type

APPENDIX I A TIMOR OBJECT MODEL 184

left hand side of the assignment expression. For an instance of a structured type

it means that a new instance record is created and its internal pointer is assigned

to the instance record slot indicated by the left hand side. For each internal

pointer in the instance record being copied a copy of the corresponding instance

record is made (recursively). The value of each reference and of each basic val-

ue in the instance record and in its nested instance records is copied into the new

instance record.

3 Capabilities

Capabilities in ModelOS are protected entities which provide the holder with

access to other multiple entrypoint modules. Each capability has access rights

associated with it. These determine inter alia the entry points of the target mod-

ule which the caller can activate but also provide a large variety of protection

measures relating to the module and/or the thread which holds the capability

(see chapter 26 of [6]).

Capabilities are stored in instance records
79

 (see Figure AI.3); they allow a

thread to move between different modules. In conventional terms modules can

be thought of as something akin to conventional files, although the underlying

mechanisms are quite different. The modules which can be accessed via capabil-

ities always hold code for the entrypoint routines (and where appropriate for in-

ternal routines) and they may also hold persistent data. Hence they can serve as

multiple entrypoint programs, as files with semantic routines, as subroutine li-

braries, as directories, etc. The ModelOS environment eliminates the need for

79

 In ModelOS they are stored in a protected area of ModelOS segments, and are used in

inter-module calls (see chapter 15 section 3.3).

Figure AI.2 Sharing an Object

Instance Record 1

Methods Pointer

Internal Ptr for Value

Integer Value

Object Reference 1

Instance Record 2

Methods Pointer

Internal Ptr for Value

Integer Value

Object Reference 2

Instance Record 2

Methods Pointer

Internal Ptr for Value

Integer Value

Object Reference 2

OBJECT TABLE

Internal Ptr to Object 1 Instance Record

Internal Ptr to Object 2 Instance Record

Instance Record for Object 1

Methods Pointer

Internal Ptr for Value

Integer Value

Object Reference

Instance Record for Object 2

Methods Pointer

Internal Ptr for Value

Integer Value

Object Reference HEAP

APPENDIX I A TIMOR OBJECT MODEL 185

special features, such as the special public static void main (...) mech-

anism for starting programs. Instead a "program" is started simply by using a

capability to activate any permitted entrypoint routine of any module for which

the caller has a capability. To understand this in more detail one should familiar-

ise oneself with the ModelOS concepts described in [6].

Figure I.3: Instance Records with Capabilities

Instance Record 2

Methods Pointer

Internal Ptr for Value

Integer Value

Object Reference 2

Instance Record 2

Methods Pointer

Internal Ptr for Value

Integer Value

Object Reference 2

OBJECT TABLE

Internal Ptr to Object 1 Instance Record

Internal Ptr to Object 2 Instance Record

Instance Record for Object 2

Methods Pointer

Internal Ptr for Value

Integer Value

Object Reference

HEAP

Instance Record 1

Methods Pointer

Internal Ptr for Value

Integer Value

Object Reference 1

Capability 1

Instance Record for Object 1

Methods Pointer

Internal Ptr for Value

Integer Value

Object Reference

Capability 4

Capability 2 Capability 3

Capability 5

 186

 APPENDIX II

The Timor Operators

This appendix summarises the operators in Timor.

1 The Null Value and Null Exceptions

There is a special value null which can be used in comparisons and assignment

statements. This value represents an invalid value, reference or capability, de-

pending on the context in which it is used. A null exception (called NullEx) is

automatically raised by the Timor run-time system if a method is invoked on an

invalid value, reference or capability.

2 Arithmetic Operators

2.1 Operations on Numerical Values

The arithmetic operators +, -, *, /, % are defined for numerical values as in Java.

In view of the difficulties which programmers might have in really under-

standing the prefix notations of the C++ and Java increment (++) and decrement

(--) operators, these are not supported in Timor.

2.2 Collection Operators

These are described in detail in chapter 13 section 4.

2.3 Operations on Dynamic Attributes
80

The + operator is used to attach an attribute object to an object of its base type,

e.g.

80

 see Chapter 9.

APPENDIX II THE TIMOR OPERATORS 187

Person* p = new Person::Impl();

Studying* s = new Studying Impl();

p = p + s;

If an actual attribute object is already attached to an object, the exception

AlreadyAttachedEx is thrown. (However, attributes of the same type can be

attaches, if they are not identical). If the attribute is not compatible with the base

object, the exception WrongTypeEx is thrown.

The – operator is used to detach an attribute object from its current base ob-

ject, e.g.

p = p – s;

If the attribute is not currently attached to the nominated base object the excep-

tion NotAttachedEx is thrown. The attribute remains reachable via its own ref-

erence(s).

There is a shorthand version of these operators, see section 3.4.

3 Assignment Operators

The assignment operator = can assign a value, a reference or a capability to a

variable of the same type or of a supertype thereof (but not of an "including"

type, i.e. not of a type defined using includes
81

). This is in principle a copy op-

eration, i.e. the value, reference or capability is copied (but not the object or file

to which a reference or capability refers).

Any value, reference or capability can be assigned to a "handle"
82

. The val-

ue null can be assigned to any variable.

3.1 Value Assignments

In the case of a value assignment, the new value is copied from the value on the

right side of the assignment statement. It might have a different implementation

from the value being replaced
83

. In this case, as in the case of an assignment of a

subtype value, the amount of space required for the value may vary from that of

the previous value; however, this is unproblematic, since the compiler always

uses internal pointers
84

.

If the instance record of a deleted or replaced value includes reference

and/or capability slots the corresponding references and/or capabilities are delet-

81

 see chapter 7.
82

 see chapter 7 section 8.
83

 see chapter 8.
84

 See Appendix I. The heap entry associated with the internal pointer for a replaced value

can be deleted when a new value (or null) is assigned to the slot. This becomes a recur-

sive operation if the value includes pointers to further value slots.

APPENDIX II THE TIMOR OPERATORS 188

ed, but the underlying objects or persistent files are not deleted.

Note: If the compiler uses reference counts to determine when a local ob-

ject is deleted, the deletion of a reference embedded in a value variable must of

course lead to the corresponding reference count being decremented. In the case

of a null assignment to a capability the ModelOS operating system or emulator

must be informed. If a capability has a special status (e.g. owner capability) the

assignment may fail and the exception InvalidAssignmentEx is thrown to in-

dicate that the assignment operation has failed.)

3.2 Reference and Capability Assignments

The new reference or capability is copied from the value on the right side of the

assignment statement. (Note: If the compiler uses reference counts to determine

when a local object is deleted, the deletion of a reference embedded in a value

variable must of course lead to the corresponding reference count being decre-

mented. In the case of a null assignment to a capability the ModelOS operating

system must be informed.)

3.3 Assignments Involving Restrictions

If the assignment is being made from a restricted variable or parameter, the op-

eration can only take place if the left side contains at least the same restrictions.

Restrictors are described in chapter 15 section 2.

3.4 Shorthand Assignment Operators

The following operators are provided to allow programmers to shorten their

programs. The left column shows an example of the operator's use, the second

column provides a name and the third column explains the operator in terms of

the normal assignment operator.

a += b add assign a = a + b

a -= b subtract assign a = a - b

a *= b multiply assign a = a * b

a /= b divide assign a = a / b

a %= b modulus assign a = a % b

The shorthand assignment operators "add assign" and "subtract assign" can also

be used to shorten statements relating to dynamic attributes.

4 New, Create, Delete and Dereferencing Operators

The new operator accepts and copies an internal value and places it in the Object

Table (see Appendix I). It returns a reference to the entry in the Object Table.

The create operator accepts and copies an internal value and passes it to

the ModelOS system. This returns a capability for the new file.

APPENDIX II THE TIMOR OPERATORS 189

The delete operator can be used only on internal objects and on capabili-

ties for files. In the case of files the exception NotAuthorisedEx may be

thrown if the ModelOS kernel indicates to the run-time system that the operation

is not authorised.

The dereferencing operator accepts a reference or capability and returns a

copy of the content of the object or persistent file as a value, e.g.

Date* d = new Date::Impl();

...

Date dob = *d;

Dereferencing can take place only if the reference or capability involved in-

cludes a copy access right (see chapter 15 section 2).

5 Comparison Operators

There are a number of standard operators which can in principle be used to

compare instances of any Timor type and/or mode.

5.1 Comparing Values

These include the value comparison operators. They always compare values and

provide a boolean result. They are:

== compare for equality

!= compare for inequality

< compare for less than

<= compare for less than or equal

> compare for greater than

>= compare for greater than or equal

For the primitive types (e.g. Integer, Long, Boolean, Real, Float, Char)

the meaning of these operators is fully defined in Timor. (Note that String and

Array are treated as examples of the type List, not as primitive types. The def-

initions for comparing lists apply to them.)

An equality/inequality comparison with null can be used to test whether a

value is initialised. If two null values are compared using == the result is true.

The value comparison operators always compare values, regardless of the

mode(s) of the operands. Thus it is possible in a single operation to compare say

the value of a Date value with that of a reference to a Date object, e.g.

Date* d = new Date::Impl();

...

Date dob = "4/11/10";

if (d == dob) ...;

APPENDIX II THE TIMOR OPERATORS 190

This rule allows instances of mixed modes, including instances addressable via

type handles (e.g. Date***), to be compared without the application program-

mer having to cast them to the appropriate type, then dereference them before

making a comparison. This is especially useful in co-types containing binary

methods, but can of course be used in other contexts.

However, instances addressable via a Handle variable or parameter cannot

be compared using the value operators. A compile time error occurs if an at-

tempt is made to compare instances of different types (unless a subtyping rela-

tionship exists).

5.2 User-Defined Types: Comparing Using the Comparison Operators

For user-defined types the comparison operators have default definitions. How-

ever, the default definitions can be overridden in co-types (see section 9 of this

appendix).

The default definitions compare all the values, references and capabilities

defined in the instances to be compared. In cases where a type (or a component

type) may have multiple implementations the comparison must be based on the

results of the interface instance methods of that type. The comparison is a "shal-

low" comparison in the sense that the values of references and capabilities en-

countered are not checked. Instead the references and capabilities are themselves

compared as pointers.

5.3 Comparing Subtypes via the Value Operators

If an attempt is made to compare a supertype instance with a subtype instance

(by extension, not by inclusion) the comparison is made on the basis of the defi-

nition of the supertype. (The order of the operands is not significant.) Thus if an

instance of type Student is compared with one of type Person, then the com-

parison is carried out solely on the basis of the Person details of both instances.

If an attempt is made to compare instances which are different subtypes of

a common supertype (e.g. a Student and an Employee) then the comparison is

made on the basis of the lowest common supertype (here Person). Handle is

not considered a supertype in this sense, as it has no methods. A compile time

error is raised if instances of incompatible types are compared.

5.4 Comparing References and Capabilities

The following boolean operators exist for comparing references and/or capabili-

ties for identity:

~~ compare for identity

!~ compare for non-identity

APPENDIX II THE TIMOR OPERATORS 191

A warning is raised at compile time if the compiler can establish that the com-

parison involves mixed modes. If an attempt is made to compare values using

these operators, a compiler error occurs if this can be recognised at compile

time.

However, no exceptions are automatically thrown at run time, even where a

handle or a type handle *** is involved. If a mixed mode comparison is at-

tempted, the value returned by the operator ~~ is false (and the !~ operator

true). The ~~ operator returns true (and the !~ operator false) if two null ref-

erences or two invalid capabilities are compared.

6 Logical Operators

The logical operators &, |, ^, ! &&, || are defined as in Java. (Since ^ is only

rarely used, we remind readers that this is the exclusive or operator, which re-

turns true if one but not both of its operands evaluates to true.)

7 The Conditional Operator

The conditional or ternary operator ?: found in Java is not supported in Timor,

since this can easily lead to unclear programs.

8 Bit Manipulation Operators

To support system programming Timor provides the same bitwise operators as

are found in Java. These can only be used on integer values.

9 Defining/Redefining Operators in Co-Types

Some operators can be redefined by an application in co-types. The scope of

such a definition is the persistent module in which the co-type resides.

9.1 Associating Binary Comparison Methods with Operators

If a co-type contains a binary method with the identifier equal (with exactly

two parameters of the type being expanded by the co-type and returning a bool-

ean result) the compiler implements the operator == by calling this method.

If a co-type contains a binary method with the identifier less (with exactly

two parameters of the type being expanded by the co-type and returning a bool-

ean result) the compiler implements the operator < by calling this method.

If both methods are present in the same co-type, the following further oper-

ators can be automatically implemented using them in combination:

<= less or equal

> not (less or equal)

>= not less

If the co-type also defines methods with identifiers which might appear to be

APPENDIX II THE TIMOR OPERATORS 192

directly associated with these (e.g. using names such as lessequal, greater

and/or greaterequal), they are of no special significance to the compiler.

9.2 Associating Binary Operations with Operators

If a co-type contains a binary method with the identifier plus, minus, multi-

ply, divide, remainder with exactly two input parameters of the same type

and a return value (also of the same type) the compiler implements the operators

+, -, *, /, % by calling the corresponding method.

The compiler is not concerned with relationships between any of these methods.

9.3 Definitions in Multiple Co-Types

Where a program contains multiple co-types for a type and these contain appro-

priate methods for use as operators, then the normal rules for selecting a co-type

are used. However, all the methods which the compiler uses for implementing

comparison operators must be taken from a single co-type, i.e. it is not possible

to take equal from one co-type and less from a different co-type. Similarly all

the methods which the compiler uses for implementing binary operation opera-

tors must be taken from a single co-type (which need not be that used for the

comparison operators).

 193

 Appendix III: EBNF for the

Timor Programming Language

M. Evered, June 2021

// Program structure syntax

compilation_unit = compilation_item { compilation_item }

compilation_item = ["template" ["<" big_id { "," big_id } ">"] ["func" "<" generic_func

 { ";" generic_func } ">"]] { unit_qualifier } (type_defn | implementation_defn)

type_defn = enum_type | object_type

enum_type = enum_kind big_id "{" small_id { "," small_id } "}"

enum_kind = "enum" | "seq" | "circ"

object_type = object_type_head ["expands" big_id] "{" { derivation_section } { type_section } "}"

object_type_head = ("type" big_id ["&" small_id] ["for" attach_type]) | ("view" big_id)

unit_qualifier = "abstract" | "singleton" | "library" | "comod" | "callback"

attach_type = big_id | "any"

derivation_section = ("extends" | "includes" | "adjusts") ":" { inherited_item }

inherited_item = [qualifying_list] (single_item | ("(" { inherited_item } ")")) ";"

qualifying_list = "{" { inherited_item } "}"

single_item = big_id ["&" small_id] ["<" big_id { "," big_id } ">"] [small_id] { "," small_id }

type_section = redefines_section | type_instance_section | type_protected_section

 | type_callback_section | type_qualifies_section | type_callout_section | type_maker_section

 | type_binary_section | type_inout_section

redefines_section = "redefines" ":" { redefines_item ";" }

redefines_item = ["[" small_id { "," small_id } "]"] (big_id | method_signature)

type_instance_section = ["predefines"] "instance" ":" { method_signature ";" }

type_protected_section = "protected" ":" { method_signature ";" }

type_callback_section = "callback" ":" { method_signature ";" }

type_qualifies_section = "qualifies" (big_id | "any") ":" { method_signature ";" }

type_callout_section = "callout" (big_id | "any") ":" { method_signature ";" }

type_maker_section = ["predefines"] "maker" ":" { method_signature ";" }

type_binary_section = ["predefines"] "binary" ":" { method_signature ";" }

type_inout_section = ["predefines"] "inout" ":" { method_signature ";" }

method_signature = [method_qualifier] (abstract_var | op_signature)

method_qualifier = "final"

abstract_var = type_spec small_id { "," small_id }

op_signature = op_kind (type_spec | "bracket") (small_id | op_kind | "all") "(" [par_list] ") [throws_clause]

op_kind = "op" | "enq" | "open" | "close"

APPENDIX III An EBNF for Timor 194

throws_clause = "throws" big_id { "," big_id }

par_list = "..." | (par_sublist { ";" par_sublist })

par_sublist = type_spec par_id { "," par_id }

par_id = small_id ["=" expression]

identifier = small_id | big_id

implementation_defn = "impl" [big_id ["&" small_id]] "::" identifier ["expands" big_id]

 "{" { impl_section }"}"

impl_section = state_section | retained_section | constr_section | instance_section | protected_section

 | callback_section | internal_section | with_section | qualifies_section | callout_section | maker_section

 | binary_section | inout_section

state_section = "state" ":" { (var_declaration | reuse_declaration) }

reuse_declaration = ("^" | "^^") (type_spec ["::" identifier] [var_id] | "::" identifier) ";"

retained_section = "retained" ":" { var_declaration }

constr_section = "constr" ":" constructor

instance_section = ["predefines"] "instance" ":" { method }

protected_section = "protected" ":" { method }

callback_section = "callback" ":" { method }

internal_section = "internal" ":" { method }

qualifies_section = "qualifies" (big_id | "any") ":" { method }

callout_section = "callout" (big_id | "any") ":" { method }

maker_section = ["predefines"] "maker" ":" { method }

binary_section = ["predefines"] "binary" ":" { method }

inout_section = ["predefines"] "inout" ":" { method }

with_section = "with" "(" small_name ")" ["as" small_id] "{" { impl_section } "}"

constructor = constr_signature block

constr_signature = [big_id] "::" identifier ["<" generic_func { ";" generic_func } ">"]

 "(" par_list ")" [throws_clause]

generic_func = type_spec big_id "(" [par_list] ")"

method = [method_qualifier] op_signature block

block = "{" { block_statement } "}"

// Variable declaration syntax

var_declaration = ["final" | "const" | "fixed"] type_spec var_id { "," var_id } ";"

var_id = small_id ["=" expression]

type_spec = ("void" | name) ["&" small_id] ["<" type_spec { "," type_spec } ">"]

 ["[:" restrictor_expr { "," restrictor_expr } ":]"] { "[" "]" } [mode_modifier]

restrictor_expr = restrictor_id { ("+" | "-" | "*") restrictor_id }

restrictor_id = identifier | "all" | "op" | "enq" | "body" | "call"

mode_modifier = "*" | "**" | "***"

name = big_id { "." big_id }

small_name = small_id { "." identifier }

APPENDIX III An EBNF for Timor 195

// Statement syntax

statement = while_statement | repeat_statement | for_statement | if_statement | case_statement

 | with_statement | try_statement | block | (expression ";") | (throw_statement ";")

 | (return_statement ";") | (delete_statement ";") | cast_statement | cocast_statement

while_statement = "while" "(" expression ")" statement

repeat_statement = "repeat" statement { "until" "(" expression ")"]

for_statement = "for" "(" [type_spec] small_id "in" expression ")" statement ["else" statement]

if_statement = "if" "(" expression ")" statement { "elsif" "(" expression ")" statement } ["else" statement]

case_statement = "case" "(" expression ")" "of" "{" { "(" expression ")" block } ["else" statement] "}"

with_statement = "with" "(" small_name ")" ["as" small_id] block

try_statement = "try" statement { "catch" "(" exception_list small_id ")" statement } ["finally" statement]

block_statement = (var_declaration ";") | statement

exception_list = "big_id" { "|" big_id }

throw_statement = "throw" expression

return_statement = "return" expression

delete_statement = "delete" "(" expression ")"

cast_statement = "cast" "(" expression ")" "as" "{" { cast_selector block } ["else" statement] "}"

cast_selector = "(" type_spec small_id ")" | "[" type_spec small_id "]"

cocast_statement = "cocast" "(" type_spec small_id "," small_id "&" small_id ")" "as"

 "{" { cast_selector block } ["else" statement] "}"

// Expression syntax

expression = conditional_expression [assignment_operator expression]

assignment_operator = "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | ">>>=" | "&=" | "^=" | "|=" | "=*"

conditional_expression = conditional_and_expression { "||" conditional_and_expression }

conditional_and_expression = inclusive_or_expression { "&&" inclusive_or_expression }

inclusive_or_expression = exclusive_or_expression> { "|" exclusive_or_expression }

exclusive_or_expression = and_expression { "^" and_expression }

and_expression = equality_expression { "&" equality_expression }

equality_expression = instanceof_expression { ("==" | "!=" | "~~" | "!~") instanceof_expression }

instanceof_expression = relational_expression ["instanceof" big_id]

relational_expression = shift_expression { ("<" | ">" | "<=" | ">=" | "in") shift_expression }

shift_expression = additive_expression { ("<<" | ">>" | ">>>") additive_expression }

additive_expression = multiplicative_expression { ("+" | "-") multiplicative_expression }

multiplicative_expression = unary_expression { ("*" | "/" | "%") unary_expression }

unary_expression = preincrement_expression | predecrement_expression | ("+" <unary_expression>)

 | ("-" unary_expression) | unary_expression_not_plus_minus | new_expression

 | create_expression | dereference_expression

predecrement_expression = "--" unary_expression

preincrement_expression = "++" unary_expression

new_expression = "new" [primary_expression] primary_expression

create_expression = "create" [primary_expression] primary_expression

APPENDIX III An EBNF for Timor 196

dereference_expression = "*" unary_expression

unary_expression_not_plus_minus = postfix_expression | ("~" unary_expression) | ("!" unary_expression)

 | cast_expression

postfix_expression = primary_expression [("++" | "--")]

cast_expression = "(" (type_spec | "reference" | "capability") ")" unary_expression

primary_expression = primary_prefix { primary_suffix }

primary_prefix = literal | "this" | ("(" expression ")") | impl_allocation | allocation_expression

 | (small_name ["&" small_id]) | collection | ("callback" "." identifier)

 | "base" | "body" | "call" | big_id

impl_allocation = name ["&" small_id] ["<" type_spec { "," type_spec } ">"] ["[" "]"] "::" identifier

 [generic_func_par_list] arguments

generic_func_par_list = "<" generic_func_par { "," generic_func_par } ">"

generic_func_par = "(" expression ")"

allocation_expression = "new" name arguments

collection = "{" [type_spec ":"] [collection_range] { "," collection_range } "}"

collection_range = expression [".." expression]

primary_suffix = ("[" expression "]") | ("." identifier) | arguments

 "{" type_spec small_id ":" expression "}" | "{" expression ".." expression "}"

 | "[" type_spec small_id ":" expression "]"

literal = integer_literal | floating_point_literal | character_literal | string_literal | boolean_literal | "null"

boolean_literal = "true" | "false"

arguments = "(" [argument_list] ")"

argument_list = "..." | (argument { "," argument })

argument = "*" | expression

 197

 References

[1] M. Evered, LEIBNIZ - A Language to Support Software Engineering,

Darmstadt: Dr.Ing thesis, Technical University of Darmstadt, Faculty of

Computer Science, 1985.

[2] G. Menger, Unterstützung für Objektsammlungen in statisch getypten

objektorientierten Programmiersprachen, Dr. rer.nat thesis, University of

Ulm Germany, 2000.

[3] A. Schmolitzky, Ein Modell zur Trennung von Vererbung und

Typabstraktion in objektorientierten Sprachen, Dr. rer.nat, thesis,

University of Ulm, Germany, 1999.

[4] K. Espenlaub, Design of the SPEEDOS Operating System Kernel, Ulm,

Germany: Ph.D. thesis, The University of Ulm, Department of Computer

Structures, Computer Science Faculty, 2005.

[5] D. L. Parnas, “On the Criteria to be Used in Decomposing Systems into

Modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053-1058,

1972.

[6] J. L. Keedy, Making Operating Systems Secure, 2021.

[7] M. D. McIlroy, “Mass Produced Software Components,” in Software

Engineering: Concepts and Techniques, Petrocelli-Charter, New York,

1968.

[8] J. L. Keedy, G. Menger and C. Heinlein, “Inheriting from a Common

Abstract Ancestor in Timor,” Journal of Object Technology, vol. 1, no. 1,

pp. 81-106, May-June 2002.

[9] J. L. Keedy, G. Menger and C. Heinlein, “Support for Subtyping and Code

Re-use in Timor,” in 40th International Conference on Technology of

Object-Oriented Languages and Systems, Sydney, 2002.

[10] J. L. Keedy, C. Heinlein, G. Menger and M. Evered, “Diamond Inheritance

and Attribute Types in Timor,” Journal of Object Technology, vol. 3, no.

10, pp. 121-142, Nov-Dec 2004.

[11] J. L. Keedy, G. Menger and C. Heinlein, “Inheriting Multiple and Repeated

Parts in TIMOR,” Journal of Object Technology, vol. 3, no. 10, pp. 99-120,

Nov-Dec 2004.

 REFERENCES 198

[12] J. L. Keedy, C. Heinlein and G. Menger, “Reuse Variables: Reusing Code

and State in Timor,” in 8th International Conference on Software Reuse,

ICSR 2004, Lecture Notes in Computer Science 3107, Madrid, 2004.

[13] J. L. Keedy, K. Espenlaub, G. Menger and C. Heinlein, “Qualifying Types

with Bracket Methods in Timor,” Journal of Object Technology, vol. 3, no.

1, pp. 101-121, 2004.

[14] J. L. Keedy, G. Menger, C. Heinlein and F. Henskens, “Qualifying Types

Illustrated by Synchronisation Examples,” in Net.ObjectDays, 2002, Erfurt,

Germany, 2003.

[15] J. L. Keedy, K. Espenlaub, C. Heinlein and G. Menger, “Persistent Objects

and Capabilities in Timor,” Journal of Object Technology, vol. 6, no. 4, pp.

103-123, May-June 2007.

[16] J. L. Keedy, K. Espenlaub, C. Heinlein and G. Menger, “Persistent

Processes and Distribution in Timor,” Journal of Object Technology, vol. 6,

no. 6, pp. 91-108, 2007.

[17] J. L. Keedy, G. Menger and C. Heinlein, “Types and Co-Types in Timor,”

Journal of Object Technology, vol. 8, no. 7, 2009.

[18] J. Keedy, G. Menger and C. Heinlein, “Covariantly Adjusting Co-Types in

Timor,” vol. 9, no. 1, pp. 35-55, 2010.

[19] F. DeRemer and H. Kron, “Programming-in-the large versus programming-

in-the-small,” in Proceedings of the International Conference on Reliable

Software, Los Angeles, 1975.

[20] K. Arnold, J. Gosling and D. Holmes, The Java Programming Language,

3rd ed., Addison-Wesley, 2000.

[21] J. L. Keedy, M. Evered, A. Schmolitzky and G. Menger, “Attribute Types

and Bracket Implementations,” in 25th International Conference on

Technology of Object Oriented Systems, TOOLS 25, Melbourne, 1997.

[22] J. L. Keedy, K. Espenlaub, G. Menger and C. Heinlein, “Call-out Bracket

Methods in Timor,” Journal of Object Technology, vol. 5, no. 1, pp. 51-67,

2006.

[23] J. L. Keedy, K. Espenlaub, G. Menger, C. Heinlein and M. Evered,

“Statically Qualified Types in Timor,” Journal of Object Technology, vol.

4, no. 7, 2005.

[24] J. L. Keedy, K. Espenlaub, C. Heinlein and G. Menger, “Security and

Protection in Timor Programs,” Journal of Object Technology, vol. 7, no.

4, pp. 123-138, 2008.

 REFERENCES 199

[25] J. L. Keedy, K. Espenlaub, C. Heinlein, G. Menger, F. Henskens and M.

Hannaford, “Support for Object Oriented Transactions in Timor,” Journal

of Object Technology, vol. 5, no. 2, pp. 103-124, 2006.

[26] K. B. Bruce, L. Cardelli, G. Castagna, G. Leavens and B. Pierce, “On

Binary Methods,” Theory and Practice of Object Systems, vol. 1, pp. 221-

242, 1995.

[27] G. Bracha, “Generics in the Java Programming Language,” PDF version:

java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf,

http://java.sun.com/docs/books/tutorial/extra/generics/index.html, 2004.

[28] M. Evered, J. L. Keedy, G. Menger and A. Schmolitzky, “Genja - A New

Proposal for Genericity in Java,” in 25th International Conf. on Technology

of Object-Oriented Languages and Systems, 25, Melbourne, 1997.

[29] M. Evered, J. L. Keedy, G. Menger and A. Schmolitzky, “Toward Zero

Overhead Genericity in Java,” in Fachkongreß, Smalltalk und Java in

Industrie und Ausbildung, Erfurt, 1997.

[30] E. W. Dijkstra, “Cooperating Sequential Processes,” in Programming

Languages, E. Genuys, Ed., Academic Press, 1968, pp. 43-112.

[31] J. L. Keedy, K. Ramamohanarao and J. Rosenberg, “On Implementing

Semaphores with Sets,” The Computer Journal, vol. 22, no. 2, pp. 146-150,

1979.

[32] P. Courtois, F. Heymans and D. L. Parnas, “Concurrent control with

readers and writers,” Comm.ACM, vol. 14, no. 10, pp. 667-668, 1971.

[33] J. L. Keedy, J. Rosenberg and K. Ramamohanarao, “On Synchronising

Readers and Writers with Semaphores,” The Computer Journal, vol. 25,

no. 1, pp. 121-125, 1982.

[34] E. E. M. Torgersen, C. Hansen, P. von der Ahe, G. Bracha and N. Gafter,

“Adding Wildcards to the Java Programming Language,” Journal of Object

Technology, 3 (2004), vol. 3, pp. 97-116, 2004.

[35] M. Atkinson, P. Bailey, K. Chisholm, W. Cockshott and R. Morrison, “An

Approach to Persistent Programming,” The Computer Journal, vol. 26, no.

4, pp. 360-365, 1983.

[36] E. Codd, “A Relational Model of Data for Large Shared Data Banks,”

Communications of the ACM, vol. 13, no. 6, pp. 377-387, June 1970.

[37] R. C. Daley and J. B. Dennis, “Virtual Memory, Processes, and Sharing in

MULTICS,” Communications of the ACM, vol. 11, no. 5, pp. 306-312,

1968.

 REFERENCES 200

[38] A. Bensoussan, C. T. Clingen and R. C. Daley, “The MULTICS Virtual

Memory: Concepts and Design,” Communications of the ACM, vol. 15, no.

5, pp. 308-318, May 1972.

[39] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott and R.

Morrison, “PS-Algol: A Language for Persistent Programming,” in

Proceedings of the 10th Australian National Computer Conference,

Melbourne, Australia, 1983.

[40] R. Morrison, A. Brown, R. Carrick, R. Connor, A. Dearle and M. P.

Atkinson, “The Napier Type System,” in Proceedings of the 3rd

International Workshop on Persistent Object Systems, 1989.

 201

Bibliography

Arnold, K., Gosling, J. & Holmes, D. (2000). The Java Programming Language

(3rd ed.). Addison-Wesley.

Atkinson, M. P., Bailey, P. J., Chisholm, K. J., Cockshott, W. P. & Morrison, R.

(1983). PS-Algol: A Language for Persistent Programming. Proceedings of

the 10th Australian National Computer Conference, (pp. 70-79). Mel-

bourne, Australia.

Atkinson, M., Bailey, P., Chisholm, K., Cockshott, W. & Morrison, R. (1983).

An Approach to Persistent Programming. The Computer Journal, 26(4),

360-365.

Bensoussan, A., Clingen, C. T. & Daley, R. C. (1972, May). The MULTICS

Virtual Memory: Concepts and Design. Communications of the ACM,

15(5), 308-318.

Bracha, G. (n.d.). Generics in the Java Programming Language. PDF version:

java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf,

http://java.sun.com/docs/books/tutorial/extra/generics/index.html, 2004.

Bruce, K. B., Cardelli, L., Castagna, G., Leavens, G. & Pierce, B. (1995). On

Binary Methods. Theory and Practice of Object Systems, 1, 221-242.

Codd, E. (1970, June). A Relational Model of Data for Large Shared Data

Banks. Communications of the ACM, 13(6), 377-387.

Courtois, P., Heymans, F. & Parnas, D. L. (1971). Concurrent control with read-

ers and writers. Comm.ACM, 14(10), 667-668.

Daley, R. C. & Dennis, J. B. (1968). Virtual Memory, Processes, and Sharing in

MULTICS. Communications of the ACM, 11(5), 306-312.

DeRemer, F. & Kron, H. (1975). Programming-in-the large versus program-

ming-in-the-small. Proceedings of the International Conference on Reliable

Software (pp. 114-121). Los Angeles: Association for Computing Machin-

ery.

Dijkstra, E. W. (1968). Cooperating Sequential Processes. In E. Genuys (Ed.),

Programming Languages (pp. 43-112). Academic Press.

Espenlaub, K. (2005). Design of the SPEEDOS Operating System Kernel. Ulm,

Germany: Ph.D. thesis, The University of Ulm, Department of Computer

Structures, Computer Science Faculty.

Evered, M. (1985). LEIBNIZ - A Language to Support Software Engineering.

 BIBLIOGRAPHY 202

Darmstadt: Dr.Ing thesis, Technical University of Darmstadt, Faculty of

Computer Science.

Evered, M., Keedy, J. L., Menger, G. & Schmolitzky, A. (1997). Genja - A New

Proposal for Genericity in Java. 25th International Conf. on Technology of

Object-Oriented Languages and Systems, 25, (pp. 181-189). Melbourne.

Evered, M., Keedy, J. L., Menger, G. & Schmolitzky, A. (1997). Toward Zero

Overhead Genericity in Java. Fachkongreß, Smalltalk und Java in Industrie

und Ausbildung, (pp. 62-67). Erfurt.

Keedy, J. L. (2021). Making Operating Systems Secure.

Keedy, J. L., Espenlaub, K., Heinlein, C. & Menger, G. (2007). Persistent Pro-

cesses and Distribution in Timor. Journal of Object Technology, 6(6), 91-

108.

Keedy, J. L., Espenlaub, K., Heinlein, C. & Menger, G. (2007, May-June). Per-

sistent Objects and Capabilities in Timor. Journal of Object Technology,

6(4), 103-123.

Keedy, J. L., Espenlaub, K., Heinlein, C. & Menger, G. (2008). Security and

Protection in Timor Programs. Journal of Object Technology, 7(4), 123-

138.

Keedy, J. L., Espenlaub, K., Heinlein, C., Menger, G., Henskens, F. & Hanna-

ford, M. (2006). Support for Object Oriented Transactions in Timor. Jour-

nal of Object Technology, 5(2), 103-124.

Keedy, J. L., Espenlaub, K., Menger, G. & Heinlein, C. (2004). Qualifying

Types with Bracket Methods in Timor. Journal of Object Technology, 3(1),

101-121.

Keedy, J. L., Espenlaub, K., Menger, G. & Heinlein, C. (2006). Call-out Bracket

Methods in Timor. Journal of Object Technology, 5(1), 51-67.

Keedy, J. L., Espenlaub, K., Menger, G., Heinlein, C. & Evered, M. (2005).

Statically Qualified Types in Timor. Journal of Object Technology, 4(7).

Keedy, J. L., Evered, M., Schmolitzky, A. & Menger, G. (1997). Attribute

Types and Bracket Implementations. In C. D. Mingins (Ed.), 25th Interna-

tional Conference on Technology of Object Oriented Systems, TOOLS 25,

(pp. 325-337). Melbourne.

Keedy, J. L., Heinlein, C. & Menger, G. (2004). Reuse Variables: Reusing Code

and State in Timor. 8th International Conference on Software Reuse, ICSR

2004, Lecture Notes in Computer Science 3107, (pp. pp. 205-214). Madrid.

Keedy, J. L., Heinlein, C., Menger, G. & Evered, M. (2004, Nov-Dec). Diamond

Inheritance and Attribute Types in Timor. Journal of Object Technology,

 BIBLIOGRAPHY 203

3(10), 121-142.

Keedy, J. L., Menger, G. & Heinlein, C. (2002, May-June). Inheriting from a

Common Abstract Ancestor in Timor. Journal of Object Technology, 1(1),

81-106.

Keedy, J. L., Menger, G. & Heinlein, C. (2002). Support for Subtyping and

Code Re-use in Timor. In J. Potter & J. Noble (Ed.), 40th International

Conference on Technology of Object-Oriented Languages and Systems (pp.

35-43). Sydney: Australian Computer Society, Inc.

Keedy, J. L., Menger, G. & Heinlein, C. (2004, Nov-Dec). Inheriting Multiple

and Repeated Parts in TIMOR. Journal of Object Technology, 3(10), 99-

120.

Keedy, J. L., Menger, G. & Heinlein, C. (2009). Types and Co-Types in Timor.

Journal of Object Technology, 8(7).

Keedy, J. L., Menger, G., Heinlein, C. & Henskens, F. (2003). Qualifying Types

Illustrated by Synchronisation Examples. In M. M. Aksit (Ed.),

Net.ObjectDays, 2002. LNCS 2591, pp. 330-344. Erfurt, Germany: Spring-

er.

Keedy, J. L., Ramamohanarao, K. & Rosenberg, J. (1979). On Implementing

Semaphores with Sets. The Computer Journal, 22(2), 146-150.

Keedy, J. L., Rosenberg, J. & Ramamohanarao, K. (1982). On Synchronising

Readers and Writers with Semaphores. The Computer Journal, 25(1), 121-

125.

Keedy, J., Menger, G. & Heinlein, C. (2010). Covariantly Adjusting Co-Types

in Timor. 9(1), 35-55.

McIlroy, M. D. (1968). Mass Produced Software Components. In P. R. Naur

(Ed.), Software Engineering: Concepts and Techniques, Petrocelli-Charter.

New York: Petrocelli-Charter.

Menger, G. (2000). Unterstützung für Objektsammlungen in statisch getypten

objektorientierten Programmiersprachen. Dr. rer.nat thesis, University of

Ulm Germany.

Morrison, R., Brown, A., Carrick, R., Connor, R., Dearle, A. & Atkinson, M. P.

(1989). The Napier Type System. Proceedings of the 3rd International

Workshop on Persistent Object Systems (pp. 3-18). Springer-Verlag,.

Parnas, D. L. (1972). On the Criteria to be Used in Decomposing Systems into

Modules. Communications of the ACM, 15(12), 1053-1058.

Schmolitzky, A. (1999). Ein Modell zur Trennung von Vererbung und Typabs-

traktion in objektorientierten Sprachen. Dr. rer.nat, thesis, University of

 BIBLIOGRAPHY 204

Ulm, Germany.

Torgersen, E. E., Hansen, C., von der Ahe, P., Bracha, G. & Gafter, N. (2004).

Adding Wildcards to the Java Programming Language. Journal of Object

Technology, 3 (2004), 3, 97-116.

 205

 Acknowledgements

My very special thanks are due to Mark Evered, who prepared the EBNF in Ap-

pendix III of this book. His help was very much appreciated.

I also draw special attention to David Abramson for recently contributing some

relevant ideas to this book. His advice was very much appreciated.

Design of Timor

I would also like to thank all my PhD students who have contributed to the de-

sign of Timor. Key contributions, initially carried out in Ulm, were made by

– Mark Evered, later Senior Lecturer at the University of New England,

NSW Australia and Researcher at the Department of Primary Industries NSW.

– Axel Schmolitzky, later Professor at the University of Applied Sciences,

Hamburg, Germany.

– Gisela Menger, now retired.

– Christian Heinlein, later Professor at the University of Applied Sciences,

Aalen, Germany and Dean of Studies.

The design was continued after my retirement with the help of Gisela Menger,

who graciously offered several years of her retirement to assisting me.

MONADS Design and Implementations

I always saw programming language design as an important contribution to my

operating system work on the MONADS and SPEEDOS projects, but not infre-

quently my assistants on those projects also made contributions the program-

ming language work, for which I am also thankful. In this context I especially

mention my following former PhD students:

– John Rosenberg, who later became Professor at the University of Sydney,

Dean of the Information Technology Faculty at Monash University, Deputy

Vice-Chancellor at the Universities of Deakin and then Latrobe.

– David Abramson, later Professor and Head of Department at Monash Uni-

versity, then Director of Research at the Research Computer Centre of the Uni-

versity of Queensland (Co-supervisor Professor Chris Wallace).

– Kotagiri Ramamohanarao, later Professor of Computer Science at the

University of Melbourne; Head of Computer Science and Software Engineer-

ing, Head of the School of Electrical Engineering and Computer Science at the

University of Melbourne and Research Director for the Cooperative Research

Centre for Intelligent Decision Systems.

– Frans Henskens, later Associate Professor at the University of Newcastle,

 BIBLIOGRAPHY 206

NSW; Head of the Discipline of Computer Science and Software Engineering,

Deputy Head of School of Electrical Engineering and Computer Science, Assis-

tant Dean (IT) in the Faculty of Engineering and Built Environment and subse-

quently Professor in the Faculty of Health and Medicine at the University of

Newcastle (Supervisor Prof. John Rosenberg).

Further Work on Operating Systems Design

During my period as Professor of Operating Systems at the University of Darm-

stadt in Germany some advanced synchronisation techniques which are reflected

in Timor were made by my PhD student

– Bernd Freisleben, later Professor of Distributed Systems at the University

of Marburg in Germany.

At the University of Bremen in Germany the following contributed further ideas

to the design of operating systems and database systems:

– Karin Vosseberg, later Professor of Software Technology at the Universi-

ty of Applied Sciences, Bremerhaven in Germany and Deputy Director for

Study and Teaching.

– Peter Brössler, later a manager in various companies and then a Freelance

Management Adviser in Munich in Germany.

Engineering Support for the MONADS Systems

Special mention is due on the engineering side to David Koch at Monash Uni-

versity and the University of Newcastle, and to Jörg Siedenburg at the Universi-

ties of Bremen and Ulm.

Design of SPEEDOS

Many important contributions to SPEEDOS were made by my PhD student

– Klaus Espenlaub, now Software Development Director, Oracle VM Vir-

tualBox, Oracle Corporation.

Finally I would also like to thank all the undergraduate students who worked on

MONADS, SPEEDOS and/or Timor.

My work has been supported over the years by several competent secretaries,

and my special thanks in this respect are due to Renate Post-Gonzales for organ-

ising the 'International Workshop on Computer Architectures to Support Securi-

ty and Persistence' in Bremen in 1990.

Thanks are also due to the Australian Research Grants Committee for their fi-

nancial support of the MONADS Project at Monash and Newcastle.

Above all I am enormously grateful for the love, patience and support which I

have received from my wife Ulla and also from my son Nicolas

	Preface
	Table of Contents
	List of Figures
	Chapter 1 Introduction
	1 The Aims of Timor
	1.1 Support for ModelOS Applications
	1.2 Support for the Development of a Genuine Components Industry
	1.3 Research into Object-Oriented Programming
	1.4 Support for Modelling and Implementing Database Applications

	2 An Overview of Timor
	3 Designing and Implementing Systems

	Chapter 2 Control Structures
	1 Iteration Statements
	2 Conditional Statements
	3 With Blocks
	3.1 What can be Nominated in a Timor Block
	3.2 Interpreting Identifiers in a With Block
	3.3 The Scope of a With Block

	4 Exception Handling
	5 Further Syntax
	6 Pragmas

	Chapter 3 The Basic Structure of Timor Programs
	1 Identifiers
	2 Enumeration Types
	2.1 Simple Enumeration Types
	2.2 Sequences
	2.3 Circular
	2.4 Lists of Enumeration Values

	3 Type Definitions
	4 Implementations
	4.1 Retained Data
	4.2 Multiple Implementations

	5 Instance Methods
	6 Open and Close Methods
	7 Callback Methods
	8 Parameters
	8.1 Parameter Declarations
	8.2 Default Parameter Values

	9 Protected Methods
	10 Internal Methods
	11 An Example Type Definition
	12 An Example Implementation

	Chapter 4 Instances, Values, Objects and Modules
	1 The Basic Types
	2 Value Variables
	3 References and Objects
	4 Capabilities and File Modules
	5 Library Modules
	6 Conversion between Modes
	7 Numerical Representation
	8 Instance Records
	9 Shared Objects and Collections

	Chapter 5 Abstract Variables and Records
	1 Standard Implementations of Abstract Variables
	2 Records
	3 Using the Methods
	4 Final and Constant Values
	5 Fixed and Constant References

	Chapter 6 Inheritance in Conventional Object Orientation
	1 Subtyping and Subtype Polymorphism
	2 Diamond Inheritance
	3 Multiple and Repeated Inheritance
	4 Method Redefinition
	5 Subclassing and Code-Reuse
	6 Overriding Methods
	7 Conclusion

	Chapter 7 Type Inheritance in Timor
	1 Single Inheritance
	2 Method Redefinition
	3 Views
	4 Multiple and Repeated Inheritance
	5 Diamond Inheritance
	6 Inheriting from a Common Abstract Ancestor
	7 Type Rules
	8 Handles
	9 Cast Statements
	10 Comparison Operators and Subtyping

	Chapter 8 Implementations and Code Re-Use in Timor
	1 Re-Use Variables
	2 Clashing Methods in Re-Use Variables
	3 Reversing the Re-Use Relationship of Subtypes
	4 Re-Use of Independent Types
	5 Overriding Code
	6 Implementing Views
	7 Implementing Multiple and Repeated Inheritance
	8 Implementing Diamond Inheritance
	9 Implementing Types with a Common Abstract Ancestor

	Chapter 9 Attribute Types
	1 Defining and Implementing Attribute Types
	2 Static Use of Attributes
	3 Instantiating Attribute Types
	4 Attaching Attributes Dynamically to Objects
	5 Removing Attributes from Objects
	6 Casting with Attributes
	7 Final Remark

	Chapter 10 Qualifying Types
	1 Qualifiers: The Basic Idea
	1.1 Call-In Bracket Methods
	1.2 The Body Statement
	1.3 Augmenting Bracket Routines
	1.4 Testing Bracket Methods
	1.5 Replacing Bracket Methods
	1.6 Multiple Qualifiers
	1.7 Call-Out Bracket Methods

	2 Qualifying All the Methods of Any Type in the Same Way
	3 Distinguishing Between Reader and Writer Methods
	4 Qualifiers with Instance Methods
	5 Qualifying Specific Methods
	6 Call-Out Methods
	7 Combining Call-Out and Call-In Brackets
	8 Instantiating and Using Qualifiers
	8.1 Qualifying Target Objects Dynamically
	8.2 Qualifying Target Objects Statically

	Chapter 11 Co-Types
	1 The Basic Structure of a Co-Type
	2 The Maker Section
	3 The Instance Section
	4 The Binary Section
	5 A Simple Co-type Implementation
	6 Accessing Parameters at the Implementation Level
	7 Derivation and Adjustment of Co-Types
	8 Syntactic Features Limited to Co-Types in an Adjustment Hierarchy
	9 Covariant Makers
	10 Covariant Instance Methods
	11 Modifying Co-Type Definitions
	12 Merging Co-Type Methods which Result from Diamond Inheritance
	13 Merging Multiply Adjusted Co-Types for Parts
	14 Implementing Adjustment Hierarchies
	15 A Further Example of Co-Types
	15.1 Co-types for Standard Input-Output Operations
	15.2 Adjusting Input-Output Methods in Co-types
	15.3 Using Inout Methods

	16 Access to Co-Types and other Components

	Chapter 12 Generic Types and Implementations
	1 Generic Templates
	2 Type Templates
	3 Implementation Templates
	4 Actualising Templates
	5 Deriving Templates by Single Inheritance
	5.1 Deriving Templates by Extension
	5.2 Deriving Templates by Inclusion

	6 Deriving Type Templates by Multiple Inheritance
	6.1 Deriving from Templates with a Common Ancestor Template
	6.2 Deriving from Templates without a Common Ancestor Template

	7 Generically Defined Views
	8 Implementing Generic Types and Code Re-Use
	9 Implementing Generic Co-Types
	10 Generic Function Parameters

	Chapter 13 The Basic Timor Collection Types
	1 The Collection Types
	1.1 The Abstract Type Collection
	1.2 The Concrete Type Bag
	1.3 The Ordered Types
	1.3.1 The Abstract Type Ordered Collection
	1.3.2 The Abstract Type UserOrderedCollection
	1.3.3 The Abstract Type SortedCollection
	1.3.4 The Concrete Type List
	1.3.5 The Concrete Type SortedList

	1.4 The Unordered Duplicate Free Types
	1.4.1 The Abstract Type DuplFreeCollection
	1.4.2 The Concrete Type Set
	1.4.3 The Concrete Type Table

	1.5 The Ordered Duplicate Free Types
	1.5.1 The Type Sorted Set
	1.5.2 The Concrete Type SortedTable
	1.5.3 The Concrete Type OrderedSet
	1.5.4 The Concrete Type Ordered Table

	2 The Collection Implementations
	2.1 A Consolidated Definition of the Type List
	2.2 An Array Implementation of the Generic Type List
	2.3 Implementing the Remaining Types
	2.3.1 Implementing the Type Bag
	2.3.2 Implementing the Type Set
	2.3.3 Implementing the Type Table
	2.3.4 Implementing the Type OrderedSet
	2.3.5 Implementing the Type OrderedTable
	2.3.6 Implementing the Type SortedList
	2.3.7 Implementing the Type SortedSet
	2.3.8 Implementing the Type SortedTable

	3 Co-Types for the TCL Collection Hierarchy
	3.1 A Co-Type for the Base Type Collection
	3.2 Implementing the Co-Type Adjustment Hierarchy
	3.2.1 Implementing Collection&s
	3.2.2 Implementing the Remaining Co-Types

	4 Collection Syntax
	4.1 Collection Literals:
	4.2 Subcollection Selection
	4.3 Element Selection
	4.4 Type Conversion
	4.5 Collection Operators
	4.6 Boolean Expressions
	4.7 Iteration
	4.8 Implementing the for Statement
	4.8.1 Iterating through Ordered and Unordered Collections
	4.8.2 How Does the Method getNext know which Element to return next?
	4.8.3 Adding a Progress Marker to the Example Implementation
	4.8.4 Openable Collections
	4.8.4.1 Using Collections as File Modules in ModelOS
	4.8.4.2 Using Collections as Small Objects in a Timor Program

	4.8.5 Implementing Retained Data in Conventional (non-ModelOS) Environments

	Chapter 14 Generic Function Parameters
	1 Function Clauses
	2 Motivation for Static Function Parameters
	3 Defining Static Function Parameters in Type Templates
	4 Using Static Function Parameters in Implementations
	5 Actualising Static Function Parameters
	5.1 A Suggested Implementation

	Chapter 15 Support for ModelOS
	1 Returning Values of User-Defined Types
	2 Handling ModelOS Access Rights
	3 Calls to the ModelOS Kernel
	3.1 Executing Simple Kernel Instructions
	3.2 Executing Kernel Instructions involving Access and Control Rights
	3.3 Normal Execution of Inter-Module and Similar Calls
	3.4 Callback Calls
	3.5 Direct Execution of Inter-Module and Similar Calls

	4 Synchronisation and Semaphores
	4.1 General Semaphores
	4.2 Resource Set Semaphores
	4.3 Reader-Writer Exclusion
	4.4 Access to Basic Semaphore Variables
	4.5 Higher Level Synchronisation

	Chapter 16 Why Timor Does Not Need Wildcards
	1 Upper Bounded Wildcards
	1.1 Why Is a List of Students not a Subtype of a List of Persons?
	1.2 The Wildcard Solution
	1.3 The First Timor Solution: Generic Co-Types
	1.4 Using Restricted Variables and Parameters as an Alternative to Upper Bounded Wildcards
	1.5 The Restrictor OOPS

	2 Unbounded Wildcards
	2.1 Handles and Unbounded Wildcards
	2.2 Further Aspects of Working with Handles
	2.3 Casts Involving Co-types

	3 Lower Bounded Wildcards
	3.1 Comparators and Co-Types
	3.2 Type Matching and Casts
	3.3 Complementing Casts with Restrictions

	Chapter 17 Concluding Remarks
	1 Support for ModelOS Applications
	2 Flexible Support for the Design and Development of Software Components
	3 Improving the Object Oriented Paradigm
	4 Support for Database Applications
	4.1 Remote Databases
	4.2 Separating Types from Implementations
	4.3 Kinds of Database
	4.3.1 Relational Database Model
	4.3.2 Network Databases

	4.4 Flexible Database Record Entries
	4.5 Persistence
	4.6 Big Data

	APPENDIX I A Timor Object Model
	1 Instance Records
	2 The Object Table
	3 Capabilities

	APPENDIX II The Timor Operators
	1 The Null Value and Null Exceptions
	2 Arithmetic Operators
	2.1 Operations on Numerical Values
	2.2 Collection Operators
	2.3 Operations on Dynamic Attributes

	3 Assignment Operators
	3.1 Value Assignments
	3.2 Reference and Capability Assignments
	3.3 Assignments Involving Restrictions
	3.4 Shorthand Assignment Operators

	4 New, Create, Delete and Dereferencing Operators
	5 Comparison Operators
	5.1 Comparing Values
	5.2 User-Defined Types: Comparing Using the Comparison Operators
	5.3 Comparing Subtypes via the Value Operators
	5.4 Comparing References and Capabilities

	6 Logical Operators
	7 The Conditional Operator
	8 Bit Manipulation Operators
	9 Defining/Redefining Operators in Co-Types
	9.1 Associating Binary Comparison Methods with Operators
	9.2 Associating Binary Operations with Operators
	9.3 Definitions in Multiple Co-Types

	Appendix III: EBNF for the Timor Programming Language
	References
	Bibliography
	Acknowledgements

