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Preface

This book records one of the results of an Odyssey which has lasted for
more than fifty years of my life, beginning with my work in the design team of
the VME operating system for the ICL 2900 Series of computers in Kidsgrove,
England. This was followed by my founding the MONADS operating system
group at Monash University in Melbourne Australia, with follow up work on
MONADS in the groups which I later led at the University of Darmstadt in
Germany, the University of Newcastle, N.S.W., Australia and the University of
Bremen in Germany. My final professional move was to the University of Ulm
in Germany, where | founded the SPEEDOS project and the Timor Project in the
Department of Computer Structures.

At heart I am an operating system designer, but I have also long been inter-
ested in programming language design. This is inevitable because operating sys-
tem designers often develop new concepts which cannot easily be programmed
in existing high level languages. From the programming language perspective |
have been fortunate to have been accompanied through most of my career by Dr.
Mark Evered, who started his PhD work at Monash and then accompanied me to
Darmstadt, where he produced an excellent PhD based on the LEIBNIZ pro-
gramming language [1], which laid particular emphasis on information hiding
module structures and on an abstract concept for collections of items in pro-
gramming languages, both of which subsequently played an important role in
Timor. Later when I returned from Australia to Germany he re-joined the team
in Bremen and subsequently moved with me to Ulm, where he informally led
our programming language research work, which since Bremen included Dr.
Gisela Menger, whose PhD work [2] concentrated mainly on developing con-
cepts associated with collections, and Dr. Axel Schmolitzky, whose PhD work
[3] laid the foundations for the Timor idea of co-types. Soon after Dr. Evered
and Dr. Schmolitzky had left the group we were joined by Dr. Christian
Heinlein, whose knowledge of other programming languages greatly helped in
formulating Timor concepts, despite continuing his work on a quite different
dissertation. Unfortunately Dr. Evered had left to take a position in Australia
before the work specifically concerned with Timor began.
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The main aim of Timor at that time was to provide a suitable programming
language for SPEEDOS [4], which was our operating system research project in
Ulm, as a successor to the MONADS project. A new language was necessary
because key features of SPEEDOS could not be programmed in conventional
languages. A fundamental feature of SPEEDOS (as previously of MONADS)
was that it eliminated a conventional file system by providing a persistent virtual
memory which was populated by information hiding modules [5] as the basic
software objects visible to applications. An important consequence of this idea
was that Timor had to support a much more rigorous concept of objects than is
common in other object-oriented languages, e.g. by separating type definitions
from their potentially multiple implementations and by separating n-ary and
similar operations from instance methods. Furthermore SPEEDOS required lin-
guistic support for its solution of the confinement problem (which is still the
most serious security problem in operating systems'); this allows each module to
have its own specialised, user programmed 'firewalls' using a new type which
we called qualifying types.

Following my retirement I continued to develop the ideas from the MON-
ADS and SPEEDOS projects, considerably extending and improving on the
original versions and working out how to implement some of the wilder con-
cepts efficiently, such as the worldwide unique virtual memory and addressing.
The final results of that work include the formulation of a new model for secure
operating system design. This 1s described in a two volume book entitled "Mak-
ing Operating Systems Secure". The first volume develops an overview of this
new model (which I call ModelOS), while the second volume provides a de-
tailed explanation of how the model can be implemented. ModelOS currently
exists only as a design, since an implementation would be extremely expensive,
involving a new hardware design for a CPU (competition for Intel) and an oper-
ating system comparable in its scope with those of Microsoft and Apple sys-
tems.

The work on Timor has been adapted to suit the ModelOS design, and the
resultant language is described in this book. Consequently Timor is an object-
oriented persistent programming language. The basic software units seen by us-
ers of ModelOS are not directly comparable with files in conventional systems
but are modules which strictly conform to the information hiding principle. Ti-
mor allows its programmers to separate the definition of these units from their
implementations, such that a type can have multiple implementations. This

The confinement problem is the issue of how to prevent information from escaping
from a module, i.e. the problem which we hears about every day as hackers penetrate
systems and steal or alter information.
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means for example that collection types can serve a role similar to data files in
conventional systems where the different implementations might correspond to
the different implementation approaches in current systems, e.g. as sequential,
indexed sequential files or as B-Trees, etc. But Timor (and ModelOS) modules
can serve quite different purposes, e.g. as multiple entrypoint programs, as
mathematical libraries, as module directories, as operating system modules, etc.

For a user or application programmer, the code of a module is inseparable
from the data structures which it uses, and this has advantages for the security of
a system. A hacker cannot simply write a program to access a data file, as he can
in conventional systems. The ModelOS kernel ensures that the data can only be
accessed via the information hiding routines as defined in the various implemen-
tations of its type definition.

The main purpose of this book is to introduce the Timor programming lan-
guage, and in particular the new and/or unconventional ideas which it contains,
such as the separation of types from implementations, its unusual approach to
inheritance, attribute types, qualifying types, co-types, its support for genericity
(including generic functions) and its approach handling collections, as well as
some special features for supporting the ModelOS operating system.

Leslie Keedy
BREMEN 2021
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Chapter 1
Introduction

Timor” has the following four primary aims:

»  support for applications designed for the ModelOS system [6],

«  support for the development of a genuine components industry,
«  research into object-oriented programming, and

*  support for modelling and implementing database applications.

After briefly introducing these aims, an initial overview of how they have af-
fected the design of Timor is provided.

1  The Aims of Timor

1.1  Support for ModelOS Applications

The first motivation for developing Timor was to support the development of
application programs, initially for SPEEDOS [4] but later for the ModelOS sys-
tem [6]. The reason for this is that ModelOS provides a fundamentally different
computer operating system architecture from that of conventional system archi-
tectures. Here are a few examples.

First, it is a persistent virtual memory system, which means that the con-
ventional distinction between a temporary computational virtual memory and a
persistent file system disappears’. In ModelOS all applications execute directly
in a persistent virtual memory. This has the great advantage that no separate file
system is needed. Consequently the fundamental difference in conventional sys-

Timor is an acronym for "Types, Implementations and MORe".

A forerunner of this idea (known as "direct addressability") was pursued by the design-
ers of the famous MULTICS system developed at MIT in the 1960s [38, 37] but this
was unfortunately not achievable in a satisfactory way at that time because of the inade-
quacies of the available hardware. For more details, see chapter 12 of [6].
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tems between data structures for

(a) temporary data items in programs executing in conventional virtual
memory and

(b) for persistent files held in a separate file system

does not exist in ModelOS*. This has many advantages, the most important of
which from the Timor viewpoint is that Timor does not need to provide a bridge
between two ways of programming data structures. The data structures provided
by a Timor application (in a ModelOS environment) are automatically persis-
tent.

This means in practice that those kinds of data which typically are directly
supported in programming languages (e.g. individual variables such as integers
and boolean values as well as arrays and linked lists, etc.) are held in ModelOS
in the persistent virtual memory. This results in a much simpler Timor design.

The content of a ModelOS persistent virtual memory is not structured like
conventional systems. The latter distinguish between application programs and
files, whereas ModelOS supports a single major structure in the form of infor-
mation hiding modules with multi-entrypoints [5], which are known in Timor
and ModelOS as semantic routines. These can in practice be used both as persis-
tent files (together with their semantic routines) (see Figure 1.1) and as applica-
tion modules (see Figure 1.2). For a more detailed discussion of information hid-
ing see chapter 13 of [6].

Open ]
Account

[

Close
Account
Authorise D it
Overdraft A Set of Bank cpost

Account
Balance?

Accounts

Withrawal

Total Add
Balance Interest

Figure 1.1: A Bank Accounts Module

Persistent programming was initially the focus of work at the University of Glasgow
(under M. P. Atkinson) and the University of St. Andrews (under R. Morrison) in the
1980s based on an idea called orthogonal persistence [35]. Whereas their aim was to
provide mechanisms which could be implemented using conventional hardware for their
languages PS-Algol [39] and Napier [40], Timor simply presupposes that appropriate
hardware exists (via the ModelOS environment as described in chapter 12 and in the
appendix to volume lof [6]).
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A further advantage of this organisation is that it eliminates the need for a
special way of starting applications, such as Java's public static void main
(string[] args). In Timor any semantic routine of any module can in princi-
ple be invoked from any other module (subject to a ModelOS check that the
caller has appropriate access rights). In order to invoke a semantic routine a
ModelOS/Timor thread must present a capability (which is a ModelOS-
protected reference) for the module. Such a capability can be created in Timor in
a manner similar to the way it creates internal values and object references with-
in a module (see chapter 4). Capabilities contain access rights, which can also be
changed (i.e. reduced) in Timor. Normal parameters can be directly passed from
one module to another as part of an inter-module call.

[ Chess Program ]

Chess Board

Program

Fox and Hounds
Program

Figure 1.2: A Compendium of Games

For a user or application programmer, the code of a module is inseparable
from the data structures which it uses, and this has advantages for the security of
a system. A hacker cannot simply write a program to access a data file, as he can
in conventional systems. The ModelOS kernel ensures that the data can only be
accessed via the information hiding routines as defined in the various implemen-
tations of its type definition.

Supporting modules with semantic routines has a further security ad-
vantage. The interface routines of a module can be expressed at a much higher
level than in conventional systems, e.g. for a bank account module routines such
as deposit, withdraw, add interest, transfer, authorize overdraft, etc. can be de-
fined as an information hiding module. The ModelOS kernel ensures that these
routines can be individually protected and that threads can only invoke those
routines of a module for which it has permission. This provides a much more
appropriate implementation of access rights than in conventional systems, for
example by providing bankers with only the access rights to bank accounts
which their work and positions entitle them, as the following figure shows.
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Open Account v oA ox x
Close Account v oA x x
Deposit v o4 ox x
Withdraw v o4 x x
Transfer v oA x
Add Interest x x v x
Authorise Overdraft x Y x x
Customer Number v oA x A

A tick indicates that the subject at the head of the column

may carry out the operation in the corresponding row.

Figure 1.3 Access Rights expressed as Semantic Operations

It may come as a surprise to some readers that Timor does not provide a
particular model for parallel processing, multithreading, etc. The reason for this
1s quite simple. ModelOS provides several basic mechanisms based on sema-
phores (see chapter 15 section 4 and also chapters 20 to 22 of [6]) which allow
threads to synchronise their activities. At a higher level the basic operating sys-
tem provides mechanisms which allow processes and their threads” to be created
and managed, see chapter 31 of [6]. This is all achieved via inter-module calls,
which in Timor simply appear as normal calls to other modules, as is described
in chapter 4 below.

As a result of the above approach Timor supports any model for organising
parallel processing, provided that this is based on "in-process" principles® of
process/thread cooperation.

It is perhaps equally surprising for some that no Timor mechanisms are
provided to support the Internet. This is made superfluous by the fact that inter-
module calls in ModelOS (and therefore Timor) can function in appropriate cas-
es in a manner similar to conventional remote procedure calls. The destination
of a remote inter-module call is located by ModelOS automatically, using in-

The ModelOS/Timor concept of processes and threads differs substantially from that
found in most operating systems and programming languages. It is based on a rigorous
"in-process" model (see chapter 8 sections 7ff and chapter 15 of [6] ).

If you do not know what the 'in process' model is, see chapters 8 and 15 of [6].
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formation (managed by ModelOS) in the capability used to make the call. Timor
is totally unaware of the fact that calling some modules involves a remote call
(see chapters 27 to chapter 29 of [6]). For security reasons ModelOS users nor-
mally only use this remote inter-module call facility when using the Internet;
however in exceptional situations a mechanism (implemented via ModelOS
modules) is provided to allow users to use conventional email, websites, etc.
(see chapters 34 and 35 of [6]).

ModelOS is described in detail in the two volume book "ModelOS — Mak-
ing Computers Secure" [6].

1.2  Support for the Development of a Genuine Components Industry

The second aim was to design a language which can easily support the idea of
components (in the sense of components and component industries, as found for
example in the car industry). In contrast with the currently established view of
software components, Timor aims to realise Mcllroy's vision [7] that software
components need not be large, but can be quite small (e.g. a Person object or a
Date object); such components can then be built up into larger components. In
our view this philosophy is best realised in an object oriented style, with the help
of a strict interpretation of the information hiding principle [5]. An important
aspect of the module concept in Timor is that type definitions for modules can
be used both as major modules at the operating system level, as described in sec-
tion 1 above, and as internal components of such a module, as we shall see later.

1.3 Research into Object-Oriented Programming

The third aim was to carry out research into the structures of object-oriented
programming languages in order to address certain problems which arise in
practice (e.g. with respect to the relationship between subtyping and subclass-
ing), and to examine why binary methods can be troublesome, in the hope of
designing a language which does not have such problems.

1.4 Support for Modelling and Implementing Database Applications

The final aim was to provide strong support for modelling and implementing
database applications. This is not usually seen as a central aim for object-
oriented programming but it becomes essential in the ModelOS/Timor context,
where there is no extra file system in which databases (specially for business
applications) can be modelled and developed. In Timor a module can be viewed
as a file which is protected by its semantic routines, but it can also be viewed as
a collection of programs or library routines.
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2

An Overview of Timor

Pursuing the above aims has led to the design of a somewhat unconventional
object oriented programming language, which

replaces the class construct by a type definition that can potentially have a
number of different implementations [8, 9], each with a single constructor
which can have implementation-oriented parameters that can differ in dif-
ferent implementations of the same type;

supports inheritance in the case of subtype hierarchies which derive from a
common abstract ancestor, where the subtypes primarily vary the behav-
iour of their supertypes rather than add new methods (although new meth-
ods can also be added), e.g. as in the case of a collection hierarchy [8];

adds the concept of views, which are incomplete types (with implementa-
tions), that can be usefully incorporated into different type definitions [8];

supports diamond inheritance [10], and multiple and repeated inheritance
from separate types, using a technique known as parts inheritance [11];

replaces subclassing by a flexible new implementation technique based on
re-use variables [12, 9];

introduces a new kind of component, known as a qualifying type [13, 14],
which contains bracket methods that allow instance methods of other ob-
jects to be "qualified" in a modular way, e.g. to protect or synchronise
them, thus supporting the separation of concerns;

provides uniform support for distribution and persistence in the form of
persistent objects [15] and persistent processes [16];

introduces an unusual way of handling makers (the Timor name for appli-
cation-oriented constructors), binary methods, and class (static) variables
and methods, in a new kind of type, known as a co-type [17], which can be
automatically adjusted covariantly to reflect a subtype hierarchy [18].

supports genericity in forms which reflect the unusual features of Timor,
adding function parameters which allow programmers considerable flexi-
bility, for example by allowing a programmer to redefine what is meant by
such issues as equality.

These and other aspects of Timor will be described in the following chapters.

3

Designing and Implementing Systems

Timor can be used both for 'programming in the large' and for 'programming in
the small', to use the terminology coined by Frank DeRemer and Hans Kron
[19]. However, in contrast with their view that a separate module interconnec-
tion language is needed for programming in the large, the strict use of infor-
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mation hiding and of the separation of types and their implementations in Timor
allows system designers and/or programmers both to obtain an overview of how
modules can interact with each other and to concentrate on the implementa-
tion(s) of an individual module.

The design of a system can begin by specifying the purposes of individual
modules and their functionality in type definitions of major information hiding
modules which comprise a system. The designer(s) need not be concerned with
individual implementation decisions and can in this way carry out walk-throughs
of system activities before (or in parallel with) the programming of individual
modules. On the other hand individual modules can be implemented and tested
without reference to their interactions with other modules except via their pro-
cedural interfaces, thanks to their strict adherence to the information hiding
principle. These are some of the advantages of a strict adherence to the infor-
mation hiding principle and of a strict separation of type definitions from their
implementations.

For the same reasons Timor can be considered a component-oriented lan-
guage, since the components of systems and the components of the individual
programs in a system can be separately programmed and implemented in differ-
ent ways. In this way Timor can be used as a basis for developing a software
industry for software components, just as in other industries (e.g. the car indus-
try) components can be individually mass-produced and sold, as Doug Mcllroy
already envisaged in the early days of computing [7].

In the following chapters the above concepts are explained in detail. But we
begin with some of the more mundane concepts in Timor.

WARNING: The published papers which describe various aspects of Timor
were prepared before the definition of the language in this book was completed.
Readers are therefore warned that some details in these papers do not reflect the
latest definition of the language.



Chapter 2
Control Structures

Many of the statement constructs in Timor are similar to Java or C++ state-
ments, and will be immediately obvious to the reader in the examples, but there
are some exceptions, as now described:

1  Iteration Statements
The following forms of repetition are supported:

while Boolean expression {...}

repeat {...} [until Boolean expression]
The until clause is optional. If it is omitted, the statements following the
keyword repeat are executed "for ever". (In this form it can be used to exe-
cute some ModelOS processes).

for dummy-variable in collection expression {...}
[else {...}]

The optional else clause is executed if collection expression 1S an empty
set. The for statement is explained in more detail in Chapter 13 sections 4.7

and 4.8.

2  Conditional Statements

The if conditional statement supports elsif and else as follows:

if Boolean condition {...}
[elsif Boolean condition {...}]
[elsif Boolean condition {...}]
etc.

[else {...}]

A case statement is also supported, e.g.

case (x) of { // where x 1is a control variable

(valuel) {statements} // and valuel etc. are values
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(value2) {statements} // of the type of the variable

[else {...}]
}

The statements following the else clause are optionally executed if none of the
listed values matches the value of the control variable.

There is also a cast statement, which is explained in chapter 7 section 9
and a cocast statement which is explained in chapter 16 section 2.3.

3 With Blocks

Timor supports a "with" block which enables the internal identifiers of a varia-
ble to be accessed without repeating the variable name. It has the following
form.

with (variable) [as identifier] {...}

This was inspired by the Pascal "with" statement, but has been adapted to
the needs of Timor. The aim is to make code less tedious to write and easier to
understand. It is particularly useful in code which overrides methods of re-use
variables, but is not confined to this.

Unlike Pascal only a single variable can appear following the with key-
word. The optional as clause allows the nominated variable to be "renamed" by
an identifier. The reason for these changes is to make programs more intelligi-
ble.

A with block is interpreted entirely statically by the compiler when com-
piling an implementation; it plays no part whatsoever in the dynamic execution

of a program. Its sole purpose is to resolve shortened identifiers which appear in
the block.

3.1 What can be Nominated in a Timor Block

In Timor any variable identifier, including re-use variable identifiers, can be
nominated as a with variable.

Here is an example, which we used in the paper "Inheriting Multiple and
Repeated Parts in Timor" [11]:

state:

"ArrayQueuel aq; // a re-use variable

instance:

op void insertAtFront (ELEMENT e) throws FullEx {
with (aqg) {

if (size < maxSize)
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{front--; if (front < 0) front = maxSize - 1;
theArray[front] = e; size++;}
else throw new FullEx():;
}
}

This is equivalent to

state:
~"ArrayQueuel agqg;
instance: // the methods not coded in ArrayQueuel
op void insertAtFront (ELEMENT e) throws FullEx {
if (ag.size < ag.maxSize)
{ag.front--; i1if (ag.front < 0) ag.front = ag.maxSize - 1;
aqg.theArrayl[ag.front] = e; ag.size++;}
else throw new FullEx();

}

with blocks can be nested within each other, which might be useful in special
cases.

3.2 Interpreting ldentifiers in a with Block

In the first instance each identifier which is used in a with block is treated as if
it were a complete identifier (i.e. as if it were not in a with block ). This means
that it is possible explicitly to use the with variable identifier itself within a
with block which nominates it. (This can be important, for example, if a method
has to be called recursively, and within it there is a with block where the with
variable has a method with the same identifier.)

If an identifier remains unresolved, the compiler prefixes it with the identi-
fier of the with variable of the with block in which it directly appears, i.c. the
innermost with block at that point in the text (separated by a dot), and attempts
again to resolve it. If it is still unresolved, the compiler replaces the prefix of the
innermost block with the identifier of the with variable of the surrounding with
block and tries to resolve it. This process is repeated until either the identifier is
resolved (or it cannot be resolved by the outermost with variable, in which case
the compiler raises a compile time error).

A with block can itself contain a variable name using the dot notation, e.g.
with (a.b) {...}

In this case identifiers in the code are where appropriate prefixed by a.b., but
not by a. or by b. alone!
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3.3 The Scope of a With Block

The construct has been deliberately called it a block, rather than a statement, be-
cause it can have a wider scope than a statement. For example, if the with vari-
able is a state variable, the with block can (but need not) be placed directly after
the state section in which it is declared, and can, for example, continue until the

end of the implementation. However, its terminating bracket cannot be placed
where it would cause the compiler to confuse this with some other terminating
curly bracket. A with block can of course also be placed anywhere where a
normal statement is possible, but not nested within a conditional statement.

This allows several methods (even all methods) of an implementation to be
enclosed in a single with block, as is illustrated in the implementation of
OrderedSet::ArrayImpl (see chapter 13 section 2.3.4).

4 Exception Handling
All exceptions are unchecked, in the sense of Java unchecked exceptions.

A method in a type definition must list in its heading all the exceptions
which it explicitly throws, using the keyword throws. It can, but need not, de-
fine other exceptions (e.g. those of the methods which it invokes’ or arithmetic
and other typical run-time exceptions).

New exceptions can be added in a subtype (or a qualifying type).

Any exception which is not specifically defined as a type is a subtype of the
general type 'Exception’, which has no methods.

An exception can be defined in a throws clause. This is indicated in the
heading of the method. The actual handling takes place in the catch section of a
Java-like try-catch block. This takes the form

try {...} // the statements to be tested

catch (ExceptionType exceptionId) {exception handling code}
further catch blocks to handle different exceptions

[finally {optional code executed regardless of result, e.qg.

to clean up before exiting}]

The catch block can specify multiple exceptions types which use the same ex-
ception handling code. These are separated by a bar, e.g.

catch (ExceptTypel | ExceptType2 | ExceptType3 excIld)

{exception handling code}

! The information hiding principle implies that at the level of a type definition the design-

er does not know what components will be used and therefore cannot be sure which ex-
ceptions can be thrown!
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If the method does not handle an exception, this is passed to its calling
method. If the module's semantic routine (i.e. the module's outermost routine
which was invoked to enter the module) does not handle an exception, this is
passed to the ModelOS exception handler.

5 Further Syntax

Further kinds of statements are described in connection with the structures for
which they are used, e.g. case statements in connection with enumeration types.

Attention is also drawn to the existence of additional syntax for program-
ming with collections, see chapter 13 section 4.

A list of operators is defined in Appendix II.

6 Pragmas

Pragmas are not part of the Timor language, but are compiler directives (or ad-
vice) aimed at improving the efficiency of compiled programs; there is no de-
fined list of pragmas for the language but pragmas can be defined for particular
Timor compilers. Each compiler can support its own list of pragmas. The only
Timor extension is that a pragma is introduced into the text of programs on a
separate line which begins with the text #pragma.
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Chapter 3
The Basic Structure
of Timor Programs

The OO idea, as it appears in conventional programming languages, suffers
from the restriction that it is applied only to small objects within a program. The
result is that conventional OO (and other) languages faithfully reflect the con-
ventional but harmful® idea of separating

«  programs, which typically have a single entry point (parameterless in the
sense that routines have parameters) and only temporary data, from

»  persistent data (in the form of files organised by a file system).

According to that model access to persistent data files is handled by special in-
terfaces to the file system. This approach reflects the dependence of program-
ming languages on conventional operating system structures.

ModelOS and Timor rectify this deficiency by taking a uniform approach
to the definition and implementation of both small objects within a program and
large objects which form major modules known to the operating system. On the
other hand the Timor approach does not prevent the language from being used
with conventional operating systems, since access to files in a conventional file
system can be hidden behind a Timor module interface, and a single entry point
information hiding module can be used to start a program.

1 Identifiers
The following rules are defined for identifiers.

* A type or view identifier starts with a capital letter and may be followed by

This approach is harmful in the sense that it opens up a simple way for any hacker to
write programs which can relatively easily access files that are inadequately protected
by file systems. It is also harmful in that it discourages the software engineering idea of
developing major modules as information hiding modules.
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a combination of small and capital letters, including at least one small let-
ter. Other symbols are permitted as normal, except as follows.

*  The ampersand character (&) is permitted only in co-type identifiers.
*  The double colon (::) is permitted only in implementation identifiers.
* A ssingle capital letter is a type identifier.

* A variable or method identifier begins with a small letter and may be fol-
lowed by any combination of small and capital letters. Other symbols (ex-
cept ampersand and double colon) are permitted as normal.

* An identifier for a co-type variable consists of the corresponding type name
followed by the & symbol and a co-type suffix.

* A generic identifier (regardless which kind) must begin with at least two
capital letters. Small letters are not permitted in a generic identifier but ad-
ditional further symbols are permitted as normal.

The scope of type, co-type and implementation identifiers (including enumera-
tion types) is the module in which they are used.

2  Enumeration Types

Timor supports enumeration types, in three forms:

a) simple enumerations, using the keyword enum;
b)  sequences, using the keyword seq;

c) circular types, using the keyword circ.

2.1 Simple Enumeration Types
An enumeration 1s declared as
enum Colour {red, blue, green, yellow, black, white}

Unlike C++ enumerations, the values are not equivalent to integers and cannot
be coerced to integers (or any other type). Nor can a C-like "sizeof" operator be
applied to them. The only applicable operators are assignment, equality (==) and
inequality (!=).

An enumeration value can be used in a case statement, e.g.

case (thisColour) of {
(red) {statement}
(blue) {statement}
[else statement]

}

Enumerations can have sub-ranges, e.g. red..yellow. These cannot be re-
versed, and no order is implied. However they can be used as array indices, e.g.
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Drawer[] cottons = Drawer[green..white]::Impl();

Note on arrays: Timor's array indices also use sub-ranges of integers and other
types can have literal sub-ranges, e.g.

Rainfall[] rains = Rainfall[2000..2011]::Impl();

2.2  Seqguences
A sequence is declared as follows:
seq Numbers {one, two, three}

It differs from an enumeration in that its values have an ascending order, and
can be compared with each other using all the normal comparators (<, <=, ==,

=, >, >=), e.g.
one <= three // returns true

three <= one // returns false
There are the following additional operators:

one) // returns "two"

(
succ (three) // throws exception OutOfRange
pred(one) // throws exception OutOfRange

(

pred(three) // returns "two"

Numbers.range () // returns the integer value 3
Numbers.min() // returns one
Numbers.max () // returns three

Numbers.add (one, 2) // returns "three";

Numbers.add (one, 3) // throws OutOfRange

Numbers.diff (one, three) // returns -2;

Numbers.diff (three, one) // returns 2;
Sequences can have sub-ranges, e.g. two. .three and these can be reversed, e.g.
three. . .two. (Note: two dots for forward sub-range, three dots for reverse sub-
range.) Both forward and reverse sub-ranges of sequences can be used to index
arrays. They can be used in case statements.

2.3 Circular
A circular type is declared as
circ Days {monday, tuesday, wednesday, thursday, friday,
saturday, sunday}
It differs from a sequence in that its values have a circular ordering. They can be

compared with each other using all the normal comparators (<, <=, ==, !=, >,
>=), whereby the result is similar to that which would arise for a sequence, e.g.
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monday <= sunday // returns true
monday == succ (sunday) // returns true

monday > sunday // returns false

There are the following additional operators, which illustrate the circular nature
of the types:

succ (monday) // returns "tuesday"

succ (sunday) // returns "monday"

( )

( )

pred (monday) // returns "sunday"
pred(sunday) // returns "saturday"
Days.range () // returns the integer value 7
Days.add (tuesday, 9) // returns "thursday"
Days.add (monday, -8) // returns "sunday"
Days.diff (sunday, monday) // returns 1
Days.diff (monday, sunday) // returns -1

Days.range() // returns 7
There are no min and max methods.

Circular types can have sub-ranges, e.g. two. .three and these can be reversed,
e.g. three..two. These can be used for example to index arrays. (Note: two
dots always apply.)

2.4  Lists of Enumeration Values

A list of enumeration values can be created (as for other lists), by using the curly
bracket notation {}. The type of the list is the enumeration type (followed by a
semi-colon) and the values are separated by commas, e.g.

{Colour: red, green, red, blue, red}
This might for example appear in the following statement:
Set<Colour> colourset = {red, green, red, blue, red};

This is converted in the usual way to a set consisting of the values red, green,
and blue.

3  Type Definitions

The definition of a Timor type, whether it is intended as a small object within a
program or as an independent module organised by the operating system, has the
following basic form:

type typeName ({
instance:
instance method definitions /* These define the interface

methods (semantic routines) of the type */
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protected:

protected method definitions /* protected methods appear in
type definitions but can only be called by implementations
of derived types and co-types (see chapter 11) */

callback:

call back method definitions /* call back methods are
instance methods which can only be called
from a module which itself was invoked directly from
the current module. */

}

The words and symbols marked in bold are fixed parts of the Timor language.
The rest is supplied by the programmer.

Type definitions can be used to define both small and large objects (e.g.
separate modules). The most significant point is that they are fype definitions. In
accordance with the information hiding principle, and in contrast with the con-
ventional OO languages, it provides a natural way of allowing types to be de-
fined and specified separately from their implementations.

This is the simplest form which a type definition can take. There are several
possible variations on the basic form, reflecting further structural properties that
a type may have. For example, as in standard OO, it is possible to define abstract
types, in which case the keyword abstract precedes the keyword type. The
following keywords can precede the keyword type.

a) abstract: indicates that an abstract type is being defined;
b) singleton: in a module only one instance of the type can be created;

C) library: the type can be implemented in ModelOS as a library module —
see section 4.3 below and chapter 18 section 6 of [6];

d) comod: the type is implemented in ModelOS as a module which can accept
and return reference parameters’;

€) callback: the type must be implemented in ModelOS as a call-back mod-
ule (see [6] chapter 18 section 9, chapter 20 section 8.5 and chapter 28 sec-
tion 7).

4 Implementations

An implementation of a type has the following basic structure:

Normally the type definitions of independent modules (in the ModelOS sense) cannot
include interface methods which pass and/or return parameters by reference, as is ex-
plained in detail in chapter 18 section 7 of [6].
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impl implementationName {
state:

/* internal data declarations which define the state
variables of the module */

retained:

/* data which allows a thread to retain information
relating to a sequence of calls between an open call
and a close call (see section 6 below). This data is not
accessible to other threads. */

constr:

// an implementation-specific constructor

instance:

// instance method implementations

protected:

/* protected methods appear in type definitions but can
only be called by implementations of derived types (see
chapters 6 to 8) and of co-types (see chapter 11) */

callback:

// callback method implementations

internal:

/* internal methods (which do not appear in type
definitions and cannot be invoked from outside the
module), 1i.e. subroutines */

}

The various sections (except the constr section) can appear more than once in
an implementation and their order is irrelevant.

4.1 Retained Data

Retained data is an idea taken over from the ModelOS operating system (see
chapter 18 section 1.4 of [6])'°. The basic idea is that when a thread opens a
module (e.g. a ModelOS module) the module can store information about that
open call and the subsequent instance method calls which the thread makes to
the module until it calls the close routine (see section 6 below).

4.2  Multiple Implementations

The same type can have several different implementations, regardless whether it
implements small objects within a module (e.g. an employee record) or major
modules (e.g. a file of employee records). Since the interface is defined entirely

10 which was in turn taken over from MONADS.
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in procedural terms, users of objects of the type do not have to be concerned
about the data structures which appear in the state and retained sections. In
fact these may differ in different implementations of the same type. All the im-
plementations of a type must produce the "same" results.

An implementation name is the name of the type being implemented fol-
lowed by a double colon (::) then an implementation identifier. Each concrete
type must have at least one implementation, with the suffix "::Tmp1". This is
the name used for default implementations, which are automatically selected
when another implementation name is not explicitly provided.

An explicitly programmed constructor can be omitted if the variables in the
state section are all explicitly initialised or have default values''. In this case the
compiler creates a parameterless constructor, which can be invoked in the usual
way, €.g. typename: : Impl () or in the case of an explicitly defined implemen-
tation using the implementation name, €.g. Stack: : LinkedStack ().

Since different implementations of a type may require constructors with
different parameters, constructors do not appear in type definitions, but only in
implementations.

A type can be implemented in several ways [9]:

1) It can be complete self-contained, i.e. it is freshly coded independently of
all other implementations. This remains true whether the type is a base type
or is derived by inheritance from some other type.

2) An implementation can re-use code from some other implementation which
has matching methods (regardless whether or not the types stand in an in-
heritance relationship).

3) It is also possible to create implementations which are typeless and to use
these in implementations of types. Such free-standing typeless implementa-
tions have no significance for the type system. A typeless implementation is
identified by a double colon (::) then an implementation identifier (with-
out a preceding type name), €.g. : :usefulCode.

These possibilities will be discussed in more detail in chapter 8.

5 Instance Methods

An instance method is a method which operates on a single instance of a type. In
contrast with more conventional OO languages, a Timor type only has instance
methods (and possibly open and close methods, see next section). It will be ex-

11 . . . . . .
Default values for state variables in Timor are similar to those in Java, i.e. for numbers

0, for booleans false and for references and capabilities null. This should not be
confused with default parameter values, see chapter 3 section 8.
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plained in chapter 11 how other kinds of methods which appear in conventional
OO languages (e.g. static methods, binary methods and application oriented
constructors) are supported.

The instance methods which appear in a type definition specify the inter-
face routines of the type'”. There are two kinds of instance methods.

«  Enquiries, which are indicated by the keyword enq, normally" return a
value to the caller but are not allowed to modify the state data associated
with the object on which they operate'®.

*  Operations, which are indicated by the keyword op, may but need not re-
turn a value to the caller. They modify the state data associated with the
object on which they operate.

This distinction is important for ModelOS, since it allows compilers and pro-
grammers to distinguish between reader methods (enq) and writer methods (op).
This greatly simplifies reader-writer and more advanced forms of synchronisa-
tion, and it also allows users to specify their protection requirements more flexi-
bly (see chapter 15 section 2).

6 Open and Close Methods

In addition to the general methods (operations and enquiries) Timor supports
two special methods (open and close). As in conventional operating systems and
file systems an open method signifies that a thread intends to use a module via a
number of method invocations and close signifies that the sequence of method
calls has now come to completion. Not all types have open and close methods,
and in fact such routines can be added to type descriptions via a separate add-on
mechanism (see Chapter 10 section 5). They are regarded neither as operations
nor as enquiries. They are identified by the reserved names open and close.
The first (and possibly only) parameter of open allows a thread to specify
whether it intends to access the object being opened in read mode or write mode.

enum OpenMode {closed, read, write}
open void open (OpenMode mode) throws OpenError;

close void close () throws CloseError;

Individual implementations of a type can also have internal instance methods, which
can vary from implementation to implementation.

There are cases where an enquiry returns a void value (see e.g. the method sublist
chapter 14 section 4.2).

Sometimes programmers include auxiliary features in enquiries (e.g. variables which
count the number of calls). In Timor such features should be provided in qualifiers (see
chapter 10), thus ensuring that methods which logically are enquiries do not contain
write operations. This is important to allow the methods to be properly categorised for
synchronisation and security reasons, as will become evident later.
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Both methods can have further application specific parameters. As the above
example shows, these methods are indicated by the keywords open and close,
which are reserved for this purpose. The names of these methods follow the
normal rules, but in contrast with other methods they may (but need not) be
called open and close respectively.

Apart from the synchronisation aspect, these methods are useful in
ModelOS, e.g. for determining whether a removable disc can safely be dis-
mounted, and they play a role in iterating through a collection, as is explained in
Chapter 13 section 4.8.

7  Callback Methods

These are instance methods (which are defined in a separate callback section
of type and implementation definitions. When a method of a call back module A
invokes a method of a further module B, this method can invoke a call back
method of A by using the pseudo-variable callback, e.g.

callback.aMethod (params) ;
8 Parameters

8.1 Parameter Declarations

As in other languages, methods have parameters. In most languages individual
parameters in method declarations are separated by commas. By contrast, meth-
od parameters in Timor are treated syntactically as a set of data declarations
similar to those in other sections, e.g. in state sections, and are therefore separat-
ed via semicolons.

enq Boolean equal (Int il; Int 1i2);

However, as in a Timor state section, a number of parameters of the same type
can be separated by commas following the type name, e.g.

enqg Boolean equal (Int 1il, 12);

In his case the individual parameters must have exactly the same type and exact-
ly the same mode"”.

Method invocations separate parameters using commas, as in other lan-
guages.

8.2 Default Parameter Values

It is possible in Timor method declarations to provide parameters with default
parameter values, which can of course be overridden in actual method invoca-

5 Modes are described in chapter 4.
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tions. In this case each declared parameter which has a default value must be
separated by a semicolon from other parameters, e.g.

enq Boolean equal (Int il = 20; Int 1i2);

// 11 has a default value; 12 has no default value

In this case i1 has a default parameter value 20, which must also be of type Int.
This can be overridden in an actual call, e.g.

Boolean b = equal (n, m); // m and n must be of type Int

To make use of a default parameter value the programmer replaces it with an
asterisk, e.g.

Boolean b = equal (*, m);

9  Protected Methods

These are instance methods which are declared in type definitions, but which
cannot be called by normal clients. They can only be invoked by the implemen-
tations of derived types and of co-types (see chapter 11).

10 Internal Methods

Internal instance methods can appear in an internal section of an implementa-
tion. These are methods which are not visible to and cannot be called by clients
of the module. Such methods do not appear in a type definition, but appear only
in implementations. Each implementation of a type can have different internal
methods.

11 An Example Type Definition

Here is an example of a simple type which defines stack instances that hold in-
tegers16:
type Stack {
instance:
op void push(Int i) throws StackFull;
/* puts an integer on the stack top
or signals that the stack is full */
op Int pop() throws StackEmpty;
/* removes and returns the integer at the stack top
or signals that the stack is empty */
enqg Int top() throws StackEmpty;
/* returns the integer value at the stack top

without modifying the stack */

16 This should not to be confused with the ModelOS kernel's thread stack.
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enqg Int length();
/* returns an integer indicating
the current stack length */
enq Boolean contains (Int 1i);
/* indicates whether the integer i

is currently on the stack */

protected:

}

enq Int getEntryAtPos (Int position)
throws Invalid Param;

// position 0 signifies first position

Notes:

1) Type names always begin with an upper case letter followed by a non-
uppercase character; this includes the basic types such as 1nt and Boolean.

2) The method push has an integer parameter which is referred to in imple-
mentations of the method as i. It returns a void result.

3) The method pop has no parameters but returns an integer as its result.

4) The first two methods are defined as operations (op) because they change
the state data to carry out their tasks.

5) The remaining methods are defined as enquiries (enq) because their tasks
do not require them to change the state data of implementations.

6) The users of stack objects are unaware of the data structures used in imple-
mentations.

7) The example illustrates a stack of integers. Timor has a generic facility,
which can be used to define container types (including stacks) that hold el-
ements of any types, defined generically'’. At this tutorial stage we prefer
not to introduce the additional features needed to support genericity; these
are explained in chapter 12.

8) The protected method can be used by a co-type (to be discussed in chapter
11) to gain efficient access, e.g. for a copy operation.

12 An Example Implementation

Here is a possible implementation of the type stack.

Not to be confused with containers in ModelOS. In Timor a container type is a type
which stores instances of other types. In addition to stacks (illustrated here) different
container types can be defined, e.g. lists, sets, tables, queues. They are more fully dis-
cussed in chapters 12 to 14.
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impl Stack::ArrayStack {
state:
Int[] stack = null; // an array of integers
Int maxlength, length = 0;
constr: /* constructs the array using a Timor array
constructor */
Stack::ArrayStack (Int maxlength) throws BoundsEx {
if (maxlength < 1 || maxlength > 1000000)
throw new BoundsEx () ;
this.maxlength = maxlength;
stack = Int[]::Impl (maxlength); // an array constructor
}
instance:
op void push(Int i) {

if (length == maxlength) throw new StackFull();
stack[length] = i;
length++;

}

op Int pop() {

if (length == 0) throw new StackEmpty();
length--;

return stack[length];

}

enqg Int top() {

if (length == 0) throw new StackEmpty();
return stack|[length-1];

}

enq Int length() {return length;}

enqg Boolean contains (Int i) {

for (next in {0.. (length-1)})

if (stack[next] == i) return true;

return false;

}

protected:
enqg Int getEntryAtPos (Int position) {
if (position < 0 || position 2 length)
throw new InvalidParam();

return stack|[position];

}
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Notes:

1) The state section contains data declarations which appear in each instance
of the type being implemented as an ArrayStack.

2) Constructors are not defined in type definitions because they may have dif-
ferent implementation-dependent parameters. The name of an implementa-
tion constructor is the same as that of the implementation.

3) There is only one constructor per implementation. In chapter 11 it is shown
why this is not a limitation compared with other OO languages.
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Chapter 4
Instances, Values, Objects
and Modules

When an implementation of a type is compiled, the compiler creates a pattern
for an instance record, which contains an internal form of the state declarations
and an internal pointer to the corresponding list of instance methods. When a
constructor is invoked, this creates and initialises an actual instance record.

Some OO languages, such as C++, draw a distinction between values and
pointers to values. Others, including Java, have avoided the explicit use of
pointers, presumably with the well-intentioned aim of eliminating certain poten-
tially harmful programming tricks, such as allowing arithmetic operations to be
used to change pointers. Unfortunately this also removes from the programmer
the ability to determine precisely when underlying pointers should be used,
which is obviously disadvantageous in the ModelOS context. Consequently Ti-
mor explicitly promotes the ability to distinguish between pointers and values.

The C notation for pointers has been partially re-introduced in Timor, but C
and C++ programmers are warned that many of the "features" of pointers in
those languages have not been included, especially the ability to carry out point-
er arithmetic. In Timor, pointers are usually called references, which can be im-
plemented as ModelOS pointers.

Timor also introduces a notation for capabilities, which are pointers to ma-
jor modules known at the operating system level'®. These correspond to
ModelOS capabilities. This eliminates the need for special constructs to access
persistent files, necessary in other programming languages.

In ModelOS a capability is a protected data structure which contains a unique module
identifier (for modules known to ModelOS, which are equivalent to persistent files in
conventional file systems) and an extensive set of access rights and restrictions. Capa-
bilities can only be accessed via ModelOS privileged kernel instructions.
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The instance record produced by a constructor represents a value for that
type. This can, for example, be assigned to a value variable, or it can be trans-
formed into an object, which can then be assigned to a reference variable, or it
can be transformed into a persistent file, which can be assigned to a capability
variable.

1  The Basic Types

The basic types (e.g. integers, booleans, characters) are similar to those in Java.
These form the basis for building structured types and are normally provided by
the computer architecture. Wherever possible, basic types and structured types
are handled uniformly in Timor. Thus in contrast to most other languages they
have type names which begin with a capital letter, e.g. Int, Boolean. As will be
seen later, they can be statically instantiated in the normal way, but they can also
be dynamically instantiated as (shareable) objects accessible via references (see
sections 2 and 3 below).

Although a high degree of uniformity exists in Timor for the handling of
the basic types and structured types, there are some inevitable small differences,
which arise from the fact that basic types represent the level of "real" implemen-
tation, i.e. they provide the starting point for defining and implementing struc-
tured types. These differences can be summarised as follows:

a) There is only a single (implicit) implementation for a basic type, whereas a
structured type can have more than one implementation.

b) A basic type has no normal instance methods. Its operations all fall formal-
ly into the Timor categories binary or constructor (including constructors
such as the negation of an integer, or binaries which sum of two integers).

c) Basic types always have a valid value by default, whereas structured types
have a special value null.

There is a special type Array, which is also similar to a Java array. This is not
primarily intended for direct use in programs (though it can be so used). Its pri-
mary purpose is to provide an implementation of the Timor Collection Library
(see chapter 13 section 2.2), which can then be used to provide an equivalent of
arrays (see chapter 13 section 4.3, 'Selection by Position').

2 Value Variables
A value variable is declared as a type name followed by an identifier for the var-
iable. Its value can be initialised by assigning a value of the same type to it,
which in the case of the built-in types is often a literal value, e.g.

Int 1 = 3;

String s = "This is a string";



Chapter 4 INSTANCES, VALUES, OBJECTS AND MODULES 28

In the case of user-defined types a constructor defined in an implementation of
the type can be called, e.g.

Person p = Person::Impl();
or an existing value of the type might be assigned to it, e.g.
Person p2 = p; // This is a copy operation

Different implementations of the same type can co-exist in the same program.

3  References and Objects

A fundamental difference between a value and an object is that values are not
shareable, 1.e. a value can only be addressed (in accordance with the information
hiding principle) by the methods of an implementation of the type in which the
value variable is defined when operating on the appropriate instance. In contrast,
objects are shareable if they can be reached via an appropriate reference varia-
ble. Reference variables are stored as pointers'” in the state section of an in-
stance record.

A reference variable is declared using a type name with a single asterisk as
a suffix, followed by an identifier for the reference, e.g.

Person* spouse;

References point to objects of the appropriate type. In order to create an object
(as distinct from a value within an object) the operator new is used, e.g.

Person* spouse = new Person::Impl();

The new operator is followed by a value of the appropriate type. The example
shows how this value might be created by a constructor, but an existing value of
the appropriate type can also be used to create an object, e.g.

Date* dob = new today;

A reference assignment, 1.e. the assignment of a reference variable to an-
other, causes both references to point to the same object™, e.g.

Person* myBrother = new Person::Impl () ;

Person* hisCousin = myBrother;

The value of an object can be retrieved as a value by using the dereferencing
operator, which creates a copy of the content of the object:

Person personDetails = *myBrother;

References are in fact indirect. A reference selects an entry in a Timor (run-time) object
table, which in turn points to the object in question. The indirection is not visible in Ti-
mor. In this way objects can be shared and can be relocated and deleted without causing
problems. For more details see Appendix I.

2% in the (hidden) object table.
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The built-in types can also be created as objects, e.g.
Int* intObject = new Int::Impl (5);
or more simply
Int* intObject = new 5;
Both these declarations create an integer object (with a value 5), which can be
shared by other objects.
There is an explicit delete statement for deleting objects, e.g.
delete (hisCousin);

This causes the referenced object to be deleted®'. Subsequent attempts to access
the object by any reference cause an exception.

If an object becomes unreachable, it can be deleted by a garbage collector.

4 Capabilities and File Modules

When Timor is used in the ModelOS environment it does not require a special
interface to give programs access to a conventional file system. Instead it must
take into account the difference between types/implementations which serve as
independent ModelOS modules (see chapter 1 section 1) and objects which are
internal structures within a ModelOS module. This is achieved in Timor via fea-
tures to support ModelOS capabilities, which are protected ModelOS data struc-
tures that provide access to (and protection for) ModelOS modules.

Just as reference variables point to the objects within a module, so capabili-
ties point to file modules™. The notation used to signify a capability variable for
a file module is a type name followed by two asterisks, e.g.

TextFile** myFile;
Just as new is used to create internal objects, so the keyword create is used to
create a new file module, e.g.

TextFile** myFile = create TextFile::Impl ()

Similarly the other operations involving objects described above apply analo-
gously to capabilities, though it is unlikely that these will be used frequently.
For example a new module can be created by nominating an existing value or a
literal, e.g.

TextFile myFile = TextFile::Impl{();

21 In contrast with some OO languages, explicit deletion is supported, because Timor inter

alia aims to be a realistic language for database applications.

In contrast with objects, there is no "capability table" within a module. The operating
system manages capabilities, which can be passed to the instance methods of a module
as parameters and can be stored internally in capability variables.

22
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// This creates an instance record
myFile.insert ("This is my file");
// This inserts text into the instance record
TextFile** hisFile = create myFile;
/* This creates a file from the instance record and assigns
it to a capability */
A capability assignment copies a capability, e.g.
TextFile** myFile = create TextFile::Impl () ;
// This creates a file and assigns it to a capability

Textfile** anotherCapability = myFile;
// This 1s a capability copy operation

Copying a capability does not create a new module, but simply a new capability
for the same module. (In ModelOS systems this operation is of course only per-
mitted if the "copy" right is set in the capability to be copied.’) Similarly, a file
can be deleted using the delete operator, but only if the rights in the capability
allow this.

Violations of the rights in capabilities result in exceptions which are han-
dles as ModelOS exceptions.

The different possibilities for organising instances as values, references and
capabilities are known as different modes.

5 Library Modules

Library modules are usually considered to be modules which provide commonly
used algorithms and data structures. They are sometimes implemented in
ModelOS as separate modules which can be used independently of other mod-
ules. For example a library of trigonometrical functions can be implemented in
this way. Such modules should not be designated as 1ibrary types in Timor.

Other library modules, such as synchronisation modules (see chapter 15
section 4) are closely related to the data of application modules and it would be
extremely inefficient to treat these as normal modules which are accessed via
inter-module calls (which in ModelOS are the main mechanism for implement-
ing protection, and are consequently quite slow when compared with calls be-
tween the objects in a single module). Consequently these are designated in type
definitions as library modules and the compiler can treat these almost like
other internal data structures, with a root data segment which is integrated into
the other data structures of a program. How this happens in detail in ModelOS is
explained in [6] chapter 18 section 6. A further reason for this is that unlike calls

> For more details about copying capabilities see [6] vol.2 chapter 26 section 3.3.
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to independent ModelOS modules, such library modules can have references as
parameters and return values.

There is a third group of library routines which can both act as separate
modules and can be integrated into other modules. This applies especially in the
case of collection modules. These can conveniently serve as data structures
within an application (e.g. for temporary arrays, queues, etc., as supported in OO
languages) but also as persistent separate file modules (equivalent to file system
files in conventional operating systems. From the Timor language definition
viewpoint there is no significant difference (provided that they follow the rule
that their interface methods do not pass or return references). But because
ModelOS distinguishes the two cases the Timor compiler must provide a param-
eter which indicates whether such a module is to be implemented as a separate
module or as a unit integrated into some other module.

6  Conversion between Modes

Mode coercion (i.e. implicit conversion between modes) is not supported, but
casting between modes is supported using a syntax similar to the Java type cast
syntax, 1.e. by placing the converted mode name (in brackets) before the item to
be casted, e.g. Person* p = (reference) x, where x might be a value varia-
ble. In this trivial example it would have been simpler to use the keyword new to
achieve the same effect if it were clear that x is a value, but if it were possible
that x were already a reference, that would cause an error. As we shall see in
chapter 7 section 8§ this situation can arise when Timor "handles" are used. To
convert to a value the syntax is (value); to convert to a reference the syntax is

(reference), to convert to a capability the syntax is (capability)>*.

7 Numerical Representation

. . . 25
Timor uses the same rules as Java for representing and casting numbers.

8 Instance Records

Compilers implement values, object references and capabilities using an in-
stance record which contains pointers into a heap. An instance record also con-
tains a pointer to the list of methods of the implementation. This organisation is
described in more detail in Appendix 1.

9  Shared Objects and Collections

Section 3 described how objects are reached via references with the beneficial

24
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The ModelOS access rights in converting to a capability are all set to true.
see for example http://faculty.salina.k-state.edu/tmertz/Java/041datatypesandoperators/
07typecoercionandconversion.pdf
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consequence that they become shareable (in contrast with values). This opens up
the possibility that the same objects can appear in several object collections.
This is taken into account in the Timor Collection Library (TCL), which allows
a collection to be copied using the operator =* ('reference copy')*’. In this case
programmers must of course ensure that access is synchronised where appropri-
ate.

The effect of the reference copy operator is that the operation copies only
the references which refer to the elements in the collection. References within
the elements themselves are not affected by the operation. One advantage of this
is that the copy operation is faster than it would otherwise be. When such an ob-
ject is deleted via a shared collection, only the reference is deleted. Similarly
when the shared collection is deleted, this does not affect the original collection.
However, if the original collection or an element (object) in it is deleted this ac-
tion is taken as if the collection is not shared, with the consequence that errors
can occur when accessing the objects via a shared version. Since the aim of this
mechanism is to speed up temporary activities (such as taking an intersection of
two object collections) this restriction is not considered to be problematic

2% see chapter 13 section 4.5.
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Chapter 5
Abstract Variables
and Records

Timor types strictly follow the information hiding principle by not permitting
"raw" data declarations (i.e. fields) to appear in interface definitions. Only
methods are permitted. This is important to ensure that synchronisation and pro-
tection can be organised correctly.

However, this can be extremely inconvenient for programmers, especially
when "small" types are being defined. Consequently Timor allows some meth-
ods to be defined in a type interface as if they were variables. This simplifies
programming, but in reality the compiler treats each such variable declaration as
a pair of methods, often known as "setters" and "getters". One method is a writer
method which apparently sets (modifies) the value of a (hidden) state variable,
while the second, an enquiry, returns the value of the (hidden) state variable to
the caller. (In implementations of the type there is no compulsion for an imple-
mentation programmer actually to declare such hidden variables in the state sec-
tion; he can implement the methods however he wishes, provided that the im-
plementation fulfils the specification.) In this way the application programmer's
task is simplified, the interface is easy to understand, but above all, justice is
done to the information hiding principle, allowing synchronisation and protec-
tion to be organised in an orderly and straightforward manner.

For example, in the instance section of a type definition a programmer
might make the following abstract variable declaration:

Date dateOfBirth;

This is equivalent to the following method pair’’:

*7 As is common in OO languages, Timor allow the overloading of method names.
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final op Date dateOfBirth (Date dateOfBirth);
final enq Date dateOfBirth();

The modifier £inal, when associated with a method, means that the method in
question cannot be overridden in a subtype (to be discussed below). The user of
an object can access it in the familiar OO style, e.g.

if (mySon.dateOfBirth.day == 7) ...;
The compiler converts this into method calls, e.g.
if (mySon.dateOfBirth().day() == 7) ...;

An abstract variable declaration can be modified by the keyword final, in
which case there is only an eng method.

1  Standard Implementations of Abstract VVariables
The standard implementation for abstract values has the following pattern:

state:
Date dateOfBirth;

instance:
final op Date dateOfBirth (Date dateOfBirth)
{return this.dateOfBirth = dateOfBirth;}
final enq Date dateOfBirth()
{return dateOfBirth;}

In order to take advantage of this, the programmer simply declares the state var-
1able; the compiler then automatically adds the implementation.

The same technique can be used for references and capabilities. Thus, if a
type definition includes the declaration of a reference, say, to another person,

e.g.
Person* spouse;
this corresponds to two methods

final op Person* spouse (Person* spouse);

final enq Person* spouse();
with standard implementations

state:

Person* spouse;

instance:

final op Person* spouse (Person* spouse)
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{return this.spouse = spouse;}
final enqg Person* spouse()

{return spouse;}

Similarly, if the person definition includes a capability for a related file mod-
ule, e.g.

Document** birthCertificate;
this corresponds to two methods

final op Document** birthCertificate
(Document** birthCertificate);

final enqg Document** birthCertificate();
with standard implementations

state:

Document** birthCertificate;

instance:
final op Document** birthCertificate
(Document** birthCertificate)
{return this.birthCertificate = birthCertificate;}
final enqg Document** birthCertificate()

{return birthCertificate;}

2 Records

Often for programming in the small, a type definition may consist entirely of
abstract variables; this is often called a "record", e.g.

type Person {
instance:
String name;
String address;
Date dateOfBirth;
Person* spouse;
Document** birthCertificate;

}

In this case the compiler produces a standard implementation of the entire type
with the implementation name <typename>::Impl (here Person::Impl). If
abstract variables are not explicitly initialised the default methods are provided
automatically.
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Hence abstract variables and records comply with the information hiding
principle without burdening the programmer with the work of declaring setter
and getter methods.

3  Using the Methods

Like other OO languages, Timor uses the dot notation to call the methods asso-
ciated with an instance of a type, i.e. <instance>.<method call>. The in-
stance can be a value, a reference or a capability which is currently reachable.

Thus to initialise the name of Peter's spouse, where Peter is a Person ob-
ject declared as follows

Person* peter = new Person::Impl();

the following statement would be formally correct:
peter.spouse () .name ("Mary") ;

The nominated instance is <peter.spouse ()> which 1s a method call to the
enquiry spouse in the instance record for peter. This returns a reference which
is then used as an instance to call the operation name associated with the in-
stance record for Peter's spouse; this sets the state variable called name to the
string "Mary".

Calling methods associated with abstract variables can be simplified so that
it appears if they could be accessed as variables, i.e.

peter.spouse.name = "Mary";

The compiler converts this back to method calls. This is necessary to ensure that
synchronisation and protection work correctly.

4  Final and Constant VValues

Timor allows value variables to be defined as final or const. A final varia-
ble is one which must be initialised as part of the initialisation of the instance in
which it is embedded, and thereafter it cannot be reinitialised. However, all the
methods of its component instances can be invoked, as with final Java variables.
An interesting effect of £inal components is that the implementation cannot be
changed at run-time, potentially allowing a compiler to make optimisations.

A const variable is defined such that once it has been initialised neither it
nor its variables (recursively) can be modified after they have been initialised.
This implies that it and its variables must be fully initialised by its constructor®®.
Thereafter its value can be read but not modified. The effect of declaring a vari-

8 This statement is modified in chapter 11 section 2.
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able as const is that only its eng methods and the enq methods of it variables
may later be invoked.

Attempts to violate the limitations associated with a £inal variable (i.e. at-
tempts to assign a new value to it) and with a const variable (i.e. attempts to
assign a new value to it or to invoke op methods on it) can be detected at com-
pile time.

5 Fixed and Constant References

A reference which has a fixed value (i.e. which cannot be changed) is declared
using the modifier fixed, e.g.

fixed Person* spouse = new Person.init();

Such a reference must be initialised at the latest by the constructor for the im-
plementation in which it is embedded®. Thereafter it cannot be changed. How-
ever, this is orthogonal to the issue whether content of the object to which it re-
fers can be changed. The latter is determined by the modifier const as follows.

Access to an object via a reference declared as const has the same effect
as if the object were accessed via a variable declared as const, i.e. only the eng
methods of the object and of its variables may be invoked via the reference. Be-
cause there is no dereferencing operator which would allow the value of a refer-
enced object to be modified directly, there is no need for a £inal modifier
(which would by analogy allow the object's instance methods to be invoked
without restriction but prevent assignments to the object as such) for references.

?  See chapter 11 section 2, which describes how an exception can be implemented.
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Chapter 6
Inheritance in Conventional
Object Orientation

Inheritance is widely regarded as one of the key advantages of OO program-
ming. It is concerned with two different but related concepts: subtyping and
subclassing. The first enables programmers to take advantage of polymorphism
in their programs; the second allows code to be re-used. Both are based on the
idea of extending classes of objects. These two concepts are first discussed in a
fairly general way in this chapter and then in further chapters the Timor ap-
proach is described. The following discussion by no means exhausts the theme
of inheritance in conventional OO languages, but instead concentrates on the
points which are significant for understanding Timor.

1  Subtyping and Subtype Polymorphism

Given a base type, €.g. Person as defined in chapter 5 section 2, this can be ex-
tended in different ways to model more specialist kinds of persons, e.g. a stu-
dent, a tutor, a professor. The extended types are called subtypes (here subtypes
of Person) . In each case further attributes™ can be added. The result is that dif-
ferent subtypes of the same type (called the supertype) have some features in
common (here those defined in Person) but they also have some additional fea-
tures which are not shared. This is how a subtype student might be defined in
Timor:

type Student {
extends:
Person;

instance:

39 .. abstract variables and/or (other) methods (see chapter 5).
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String university;
Int studentId;
String faculty;
Date commencement;
String degree;

}

The extends clause indicates that the methods of Person are automatically in-
cluded as methods of students. This commonality allows polymorphism to be
introduced by allowing an instance of a subtype to be assigned to a variable (or
parameter) of its supertype, €.g.

Person* aPerson;
Student* aStudent = new Student::Impl();

aPerson = aStudent;
Note:

The effect of the last line is that the reference aPerson points to the same object
as the reference astudent. In Timor a value assignment (i.e. a copy operation)
causes the entire value of a subtype to be copied (in contrast with C++). Thus
the statement

Person aPersonValue = *aStudent;
. . . 1
results in the value aPersonvalue holding an entire student value®'.

This has the advantage that a student instance can now be treated as a
person in all contexts which expect Person instances. For example a Student
instance can be passed as a parameter to methods which expect to receive a
Person Instance as a parameter, or it can be added to a list of Person instances,
etc. This works because only the methods of person can be applied to instances
which are assigned to a variable declared as being of type person. It does not
work the other way around, because although every student, tutor, etc. is a per-
son, not every person is a student, tutor etc.

The subtyping paradigm is not limited to two levels. It is possible for ex-
ample to extend, say, a Professor (i.e. @ Person) t0 @ ScienceProfessor Or

an EngineeringProfessor, €tc.
A subtype hierarchy may, but need not, contain abstract types (i.e. types

which help modelling and polymorphism but which are never instantiated as real
types). For example an abstract type collection might be extended to (i.e.

3! The dereferencing operator * preceding the name of an object pointer or ** preceding

the name of a capability) returns the value of the object or file.
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more precisely defined as) concrete types such as list, bag and set, which
have at least methods which are defined in collection, such as insert element,
remove element, etc.

2 Diamond Inheritance

A particular issue arises when a type needs multiple sets of attributes. For exam-
ple if a senior student is also a tutor, a type is needed which contains the attrib-
utes of a person together with additional attributes for a student and for a tutor.
This 1s sometimes called diamond inheritance, because it is no longer simply
hierarchical but requires a network structure that forms a diamond to express the
idea graphically (see Figure 6.1).

Figure 6.1: Diamond Inheritance

This is a special case of multiple inheritance (StudentTutor inherits some
properties from Student and some from Tutor, but also — indirectly — proper-
ties from Person). In such cases subtyping is not always a particularly attractive
modelling technique; the more subtypes are required, the more problematic the
inheritance becomes. Consider that a person can be a male or female and can be
a member of a library and several sports clubs, etc. at the same time as being a
student-tutor. To model such complexity (which may well be required in a data-
base) by means of conventional subtyping, is not always a suitable approach,
because each possible combination must exist in a separate subtype definition”,
Furthermore subtyping suffers from the problem that if a person changes his/her
attributes after a while (e.g. ceases as a student and commences as an employee)
this requires the deletion of one object and the creation of another; modifying
the existing object is not possible.

While some OO languages (but not all) can support diamond inheritance,
usually this 1s in a limited form and it creates complications both in terms of
type definitions and implementations. Furthermore it doesn't fit well with the

> In OO programming the possibility of modifying the behaviour of a supertype in sub-

types further adds to the complexity.



Chapter 6  INHERITANCE IN CONVENTIONAL OBJECT ORIENTATION 41

idea of supporting components which can easily be added to an application. This
issue will be considered later.

3 Multiple and Repeated Inheritance

Figure 6.2 provides an example of how an entertainment device type might in-
herit from two simpler entertainment device types, in one case repeatedly. In
most OO languages defining and implementing such a type using conventional
inheritance techniques would be difficult, if not impossible.

Figure 6.2: Multiple and Repeated Inheritance

4  Method Redefinition

In standard OO it is possible to override a method by changing its code in the
subtype. However, changing code is an implementation technique. Usually, the
behaviour of a method changes when its implementation changes, although that
1s not necessarily the case. Unfortunately it is not usually possible in conven-
tional OO languages to distinguish between changes in behaviour and changes
in the code.

5  Subclassing and Code-Reuse

Just as the attributes of a supertype are inherited in a subtype, so also the code
which implements these attributes is re-used in implementations of the subtypes.
This may seem to be a good idea, and in straightforward cases it often is. But in
conventional OO programming languages subtyping and subclassing are very
strongly related by the fact that they do not usually distinguish between type
definitions (which are concerned with defining the logical attributes and proper-
ties of objects) and implementations of the type. These are bundled together into
a single class definition which defines both the interface and the implementation
of a class of objects™.

The OO technique of combining subtyping and subclassing into a single
mechanism causes problems in some cases, especially where multiple inher-
itance is involved. For example there are difficult issues involving both diamond

3 Java allows interfaces to be defined separately, but this is optional for programmers,

and there are restrictions regarding what can be defined in interfaces.



Chapter 6  INHERITANCE IN CONVENTIONAL OBJECT ORIENTATION 42

inheritance (see Figure 6.1) and multiple inheritance from more than one super-
type (see Figure 6.2). Even in the case of single inheritance there can be prob-
lems. For example a type DoubleEndedQueue is not a true subtype of the type
Queue (nor is a Queue a subtype of DoubleEndedQueue) and should therefore
not be used polymorphically; but it is convenient to re-use the code of Queue to
implement DoubleEndedQueue or vice versa [9].

6  Overriding Methods

It can sometimes be useful in a subtype to modify the implementation of meth-
ods which are inherited. This is achieved in conventional OO by repeating the
method heading from the supertype class in the definition of the subtype. In
some circumstances it can be useful as part of the new implementation of the
method to invoke the original method in the supertype. This can usually be
called by using a keyword such as super, but that only works for single inher-
itance.

7 Conclusion

There are several problems in the conventional OO paradigm, which Timor
avoids, as 1s described in the following chapters.
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Chapter 7
Type Inheritance
in Timor

Timor's approach of separating types from their implementations has proved to
be a valuable tool for overcoming the problems mentioned in chapter 6. In Ti-
mor, subtyping, polymorphism and method behaviour are issues relevant only to
the definition of types. By separating these from issues related to implementa-
tions, Timor is able to define subtypes involving diamond inheritance [10], sub-
types which have multiple and repeated supertypes [11] and the redefinition of
methods.

The keyword includes has been introduced into Timor as an alternative to
extends. Whereas the latter indicates a genuine subtyping relationship, the for-
mer indicates that a type definition includes the methods of another type without
implying a subtype relationship. Consequently if a DoubleEndedQueue defini-
tion indicates that it includes Queue the compiler does not permit a
DoubleEndedQueue variable to be assigned to a variable of type Queue. To-
gether these two techniques (extension and inclusion) are referred to as deriva-
tion.

1 Single Inheritance

The inheritance examples shown in the more general discussion of inheritance
(chapter 6 section 1) have already illustrated the Timor approach to very simple
single inheritance.

2 Method Redefinition

Following the Java approach [20] to method collisions, Timor distinguishes be-
tween collisions merely in the names of methods and collisions of method signa-
tures. Collisions of complete method signatures are treated as cases of redefini-
tion, while collisions simply in the names of methods (i.e. where the signatures



Chapter 7 TYPE INHERITANCE IN TIMOR 44

otherwise differ) are treated as overloading. When overloading occurs, each in-
herited method is considered to be a separate method. Thus discussions of colli-
sions in the sequel refer to cases where the method signatures are indistinguish-
able.

It is possible in Timor to separate the redefinition of behaviour of a method
from the overriding of its code, simply because behavioural redefinition is a
matter which affects type definitions while overriding is an implementation is-
sue. Thus in derived type definitions there is a section headed by the keyword
redefines, which list the methods in question and allows the new behaviour to
be informally redefined in comments™*.

3  Views

Timor provides a further construct related to inheritance, called a view. Some
programming language experts would consider this to be an abstract type. How-
ever, treating a view as a separate construct allows it to be used without all the
properties associated with abstract types, but with other features not usually as-
sociated with abstract types.

A view is a set of related interface methods which can usefully be included
in many types (using extends or includes), without embodying the central
concept usually associated with a type. For example, when modelling vehicles
one might create a subtyping hierarchy which includes an abstract type car.
This clearly embodies a central concept behind a certain class of motor vehicles,
and it may have a number of concrete subtypes corresponding to particular mod-
els of cars. Thus both the concrete and the abstract types generally correspond to
nouns. But Timor views correspond rather to a certain class of adjectives, often
ending in "able" and describing some aspect of many kinds of objects, often of
quite different types. Here is an example of a Timor view which might usefully
be included in the definitions of many types of devices and products.

view Switchable {
instance:
op void switchOn({() ;
op void switchOff () ;

enq Boolean isSwitchedOn() ;
}
This might for example be used to extend a type Radio, as follows:

type Radio {

Tt is a long term aim to enhance the design of type definitions in Timor with a more

formal technique for defining the behaviour of methods.
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extends:
Switchable;
instance:

setStation(...);

With this definition a Radio instance could be assigned polymorphically to
a Switchable variable, e.g.

Radio aRadio = Radio::Impl () ;
Switchable s;

s = aRadio;
Views can, but need not, have implementations.

Views are normally defined explicitly, but they can also be defined retro-
spectively from methods in existing type definitions and used as if the type had
been defined by extension. For example an instance of a type which had been
declared (without the use of a view) with instance methods such as switchon
and switchoff, could be assigned to a view variable switchable, provided
that the corresponding method definitions are identical.

4 Multiple and Repeated Inheritance

Assuming the existence of two type definitions, one for a type Radio and one
for a type cdplayer, the example of multiple and repeated inheritance illustrat-
ed in Figure 6.2 can be defined in Timor as follows.

type RadioDoubleCdPlayer {
extends:
Radio r;
CdPlayer cdl, cd2;
}
Notes:

1) To achieve inheritance from multiple types, the syntax of the extends sec-
tion allows more than one type to be listed.

2) To allow for repeated inheritance, identifiers (called part names) have been
associated with the type names. (Note: The identifier r could be omitted
from the rRadio type, but it has been included as it will prove useful in the
implementation presented in the next chapter.)

3) In this form the extends section looks rather like an instance section
containing abstract variables, but they are not! In fact the modelling of such
types is sometimes presented in that form (known as aggregation), but then



Chapter 7 TYPE INHERITANCE IN TIMOR 46

it cannot achieve two results which are straightforward in Timor: the poly-
morphic aspect (e.g. assigning a RadioDoubleCdPlayer to a variable of
type Radio or of type cdplayer) and the redefinition of methods.

We now consider the last two points from the viewpoint of type definitions.

a) Polymorphism: If repeated inheritance is not involved, part names need not be
used. In that case a subtype can be assigned to a supertype variable in the usual
way, e.g.

RadioDoubleCdPlayer rdcd = RadioDoubleCdPlayer::Impl () ;

Radio aRadio = rcdc;

However to do this where repeated parts are involved would be ambiguous, so in
this case it is essential to nominate the part required, e.g.

CdPlayer aCD = rcdc.cd2;

b) Method Redefinition: In the original definition of Radio the view
Switchable was included by extension. Assuming that this was also included in
the type cdplayer, its methods would appear three times in RadioDoubleCd
Player, providing separate switching mechanisms for the three main compo-
nents of the type, which would hardly be satisfactory. If aggregation had been
used to model this device, this could not be changed. Timor can achieve the
same result as that of aggregation; for example to switch on the separate switch
for the second cdplayer, the programmer could write:

rcdc.cd2.switchOn () ;

However, if the intention were to provide a single switchon () method
for both cdrlayer devices, the Timor definition of the combined device could
be formulated as follows:

type RadioDoubleCdPlayer {
extends:

Radio r;

CdPlayer cdl, cd2;
redefines:

[cdl, cd2] op void switchOn();
}

where the square brackets indicate which methods should be merged. However,
it would be tedious to repeat this for all the methods of switchable, especially
if all three switches were to be merged. To do this, the programmer simply has
to write

redefines:
[r, cdl, cd2] Switchable;
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Finally, the user of such a device must be able to determine which of the devices
should actually be in use at any particular time. For this purpose a new instance
method (and an accompanying enumeration type) can be added:

enum Mode {playRadio, playCDl, playCD2}
type RadioDoubleCdPlayer {
extends:
Radio r;
CdPlayer cdl, cd2;
redefines:
[r, cdl, cd2] Switchable;
instance:
op void changeMode (Mode m) ;

// determines which device is active

5 Diamond Inheritance

Timor has a rule that when multiple types extend a single common ancestor, the
methods of the base type appear only once in the new type. Thus at the type lev-
el there is no problem in defining situations which lead to simple diamond inher-
itance. Thus given types student and Tutor, which both extend person, the
following definition suffices:

type StudentTutor
extends:

Student;

Tutor;

}

In appropriate cases methods can also be redefined. However, using this OO
style does not solve the problems mentioned earlier, i.e. that new attributes can-
not be added to individual objects based on this type definition and that attrib-
utes cannot be removed or changed without deleting and creating instances of
the type. For such reasons Timor has an alternative mechanism (called attribute
types), which is especially useful in database applications, but which can of
course be used in any program, since Timor is a persistent programming lan-
guage. This technique, which is not based on conventional inheritance, is intro-
duced in chapter 9.

Part identifiers, which were introduced to permit repeated inheritance in
types with multiple ancestors, can also be declared in types which share a com-
mon ancestor. The following shows how a type can be defined in which a stu-
dent is a tutor in two departments.
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type StudentTutor {
extends:

Student;

Tutor deptl, dept2;

6  Inheriting from a Common Abstract Ancestor

The Timor Collection Library (TCL) provides a good example of the type issues
associated with multiple inheritance from a common abstract ancestor. The fol-
lowing is based largely on the doctoral thesis of my former assistant Dr. Gisela
Menger [2].%

The first criterion is concerned with the decision whether duplicates are
permitted in collections of items (as in a mathematical bag), and if they are not
permitted, whether they are simply ignored (as in a mathematical set), or wheth-
er an error is signalled when an attempt is made to insert a duplicate (which is
often important in database applications).

The second criterion is concerned with the order of the elements in a col-
lection, i.e. whether they are unordered (as in a mathematical bag or set), wheth-
er they are user ordered (as in a [ist) or whether they are automatically sorted
according to some criterion, e.g. alphabetically.

The TCL supports all nine combinations, as is shown in Table 7.1.%
Collection Duplication Ordering
Type Name Criterion Criterion
Bag Allow duplicates |No ordering
Set Ignore duplicates |No ordering
Table Signal duplicates |No ordering
List Allow duplicates | User ordered

OrderedSet | Ignore duplicates |User ordered

OrderedTable | Signal duplicates |User ordered
SortedList Allow duplicates | Sorted
SortedSet Ignore duplicates |Sorted
SortedTable |Signal duplicates |Sorted

Table 7.1.: The concrete collection types

In addition there are five abstract types which are used to enhance polymor-

% In practice the TCL is defined generically. Genericity in Timor is introduced in chapter

12.

3 The following description is based largely on parts of section 4 of [8].
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phism. The full type hierarchy is shown in Figure 7.1.

In order to guarantee behavioural conformity, all the common methods of
all collection types are initially defined in the abstract type Collection. Thus it
has a method insert, for example, but this does not define

— how an insertion affects the ordering of the collection,
—  whether the insertion will be successful if it involves inserting a duplicate,

—  whether an exception will be thrown to indicate a duplicate (but it defines
an exception buplEx which might be thrown).

DuplFree

Figure 7.1:  Structure of the TCL Collection Types

An abstract type with such non-deterministic methods is designed to allow
a maximum of polymorphism. In derived types the actions of the insert meth-
od are specified more precisely, depending on the node in question. Thus the
insert method of the abstract type Userordered defines that insert appends
the element at the end of the collection (and adds new methods for inserting at
other positions) but without defining its duplication properties further. On the
other hand the insert method of the concrete type Bag is defined without speci-
fying ordering, but indicating that duplicates are accepted (with the effect that
the exception Dup1Ex can be removed from Bag's insert method).

Such redefinitions of methods must be reflected by listing them in a
redefines clause of a derived type. As Timor does not support a formal speci-
fication technique, only the headers of such methods are listed, but these can
include comments describing their intended behaviour. Sometimes a redefinition
can lead to a change in the method header (e.g. where an exception defined in a
parent type is not thrown in a derived type, cf. Collection with Bag), but in
many cases the method header remains the same (though hopefully program-
mers will be encouraged to document the redefined behaviour in comments).
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7  Type Rules

Type Inheritance Rule I: If in a derived type multiple methods with the same
signature’’ are derived from a common ancestor, they are treated as a single
method (unless they have different return types, in which case a compile time
error arises).

Type Inheritance Rule 2: If the definitions of such methods differ (i.e. if one or
more of them has been redefined differently from the definition in their closest
common ancestor), they must also be listed in a redefines clause in the type
being defined.

Rule 2 in effect requires that conflicting definitions are clarified. If a definition
in one of the ancestors can be used in the new type, this can be signalled by the
use of the keyword from followed by the name of a type, e.g.

redefines {

op void insert (ELEMENT e) from UserOrdered;

8 Handles

The assignment of subtype instances to supertype variables in Timor is normally
restricted in the sense that value instances can only be assigned to value varia-
bles of the same type, object instances to object variables of the same type and
capability instances to capability variables of the same type. However, the type
name in a declaration can be followed by three asterisks, with the meaning that
instances (of that type) in any of the three modes can be assigned to such a vari-
able (e.g. Person***). Such variable declarations are called handles. 1f a varia-
ble has the three asterisk notation, all values, references and/or capabilities of
that type (or a subtype) can be assigned to it. This is useful in cases where the
mode of the object is irrelevant, e.g. in methods which compare the values of
two instances of the same type.

Furthermore, variables can be declared to have a special type Handle. This
is the supertype of all types, in the limited sense that any variable of any type
can be assigned to such a variable, provided that the mode is correct. (If the dec-
laration is of type Handle*** then variables of any type in any mode can be
assigned to it.) However, this "type" has no methods, and no instances can be
created from it. One important use is to allow variables to serve as repositories
for temporarily storing items of different types. Thus the designation Handle**
is useful in defining ModelOS directory types which hold capabilities, where

7 As in Java, exception declarations are not considered to be part of the signature of a

method.
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different entries must hold capabilities but not necessarily for the same type of
modules.

9 Cast Statements

Cast statements allow the instances assigned to variables to be treated according
to their actual type. For example if a student instance is assigned to a Person
variable, a cast statement can be used to check whether it really is a Student,
and then treat it accordingly. (Remember that not all person variables have
Student instances assigned to them.)

The Timor cast statement is one of the few statements which is radically
different from its counterparts in conventional OO languages. One reason for
this change is to allow for the use of handles for the different modes of instanc-
es, but another is to improve run-time safety against programmer errors.

A simplified form of the Timor cast statement is as follows:

cast (variable | parameter) as {
(variable declaration 1) {code for alternative 1}

(variable declaration 2) {code for alternative 2}

[else {optional code if no match}]
}

For example, to check whether a student object or a Professor object is as-
signed to a Person variable called aPerson, the programmer can write:

cast (aPerson) as {
(Student s) {code which addresses aPerson as s,
if the underlying object is a Student}
(Professor prof) {code which addresses aPerson as prof,
if the underlying object is a professor}
else {code to be executed if aPerson i1s neither a Student
nor a Professor}

}

Modes are relevant in cast statements and handles can be used. It is possible to
cast upwards, sideways and downwards.

10 Comparison Operators and Subtyping

Comparisons between separate instances are not carried out via methods de-
clared in the type, but in a related co-type (see chapter 11). If a comparison op-
erator is used to compare the values of two instances which have different static
types but have a common supertype, the equal and/or less methods of the
standard co-type of the nearest common supertype are applied. Thus if a
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Student instance is compared with say a Professor instance (or a Person in-
stance) the Personss’ equal and/or less methods will be selected.

¥ personass is the standard co-type for Person (see chapter 11).
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Chapter 8
Implementations and Code Re-Use
in Timor

Whereas in conventional OO programming languages the re-use of code is
achieved via subclassing, which is based on inheritance, Timor separates code
re-use entirely from inheritance. An implementation of a type is designated as
the type name followed by a double colon followed by an implementation name,
€.g. Queue: :ArrayImpl designates an implementation (called ArrayImpl) of
the type Queue. Each type must have at least one implementation, called
<typename>::Impl. However, this must not necessarily have been explicitly
coded. For example, the basic types have an implicit implementation; similarly
the compiler can automatically provide implementations for abstract variables
and records.

1 Re-Use Variables

To support code re-use in Timor a new concept, called re-use variables, is intro-
duced. Like other concrete variables, such variables are included in the state
sections of implementations, but unlike most other variables which typically ap-
pear in a state section, they may be declared either as types or as implementa-
tions. They may not be declared as local variables in individual methods.

Re-use variables are like normal variables in that they form part of the state
of the implementation in which they are declared. They are recognisable because
their declarations begin with a hat symbol (), e.g.

~"Queue myQueue = Queue::ListImpl(); /* Here the re-use
variable myQueue is declared as a type variable and
a list implementation constructor initialises it */

or

“Queue: :ArrayImpl myQueuelImpl = Queue::ArrayImpl (100);

/* Here the re-use variable is declared as an implementation
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variable and is initialised by an array implementation

constructor */

or in the case of a typeless implementation simply

A

::usefulCode

In all cases the programmer of the implementation in which the declarations are
embedded has access to their interface methods, but in the case of an implemen-
tation variable being declared, the programmer can also access its internal state
variables and its private instance methods. (If a re-use variable is declared via a
type declaration, a maintenance programmer can recognise immediately that any
implementation of the type can be used.)

A re-use variable may even be another implementation of the type being
implemented. On the other hand the type of a re-use variable does not necessari-
ly have any formal relationship with the type being implemented, except that
some (or all) of the interface methods may have the same definition.

The important difference between a re-use variable and a normal variable is
that the compiler compares the definitions of its interface methods with those of
the type being implemented. If some of these have matching signatures, it uses
the methods of the re-use variable to implement them, unless the programmer
has also declared the same method explicitly in the instance section. In the
latter case the explicit method in effect overrides that provided by the re-use
variable.

Interface methods of a re-use variable which do not match the type defini-
tion are ignored. However they can be invoked in the implementation by pro-
grammers.

2  Clashing Methods in Re-Use Variables

Several re-use variables can appear in a state section. If more than one of these
has a method which matches an interface method of the type being implement-
ed, the first match (in the order of the declarations) is selected, though the pro-
grammer can override this by declaring the clashing method explicitly in the
instance section and then from this method simply invoking the preferred
method implementation.

This technique easily imitates (and simplifies) the standard OO techniques
of delegation and normal subclassing. Since there is no relation between the type
of the re-use variable and the type in which it is embedded, the former can be a
subtype or a supertype of the latter or it may implement a formally unrelated

type.
Here is an example of how an implementation of Person might be used to
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implement Student.
impl Student::Impl {
state:
“"Person aPerson = Person::Impl();

// re-uses any implementation of Person

instance:
/* the Student public methods added in the subtype

are implemented here and methods of Person can also be

overridden */

3  Reversing the Re-Use Relationship of Subtypes

Since any implementation in Timor can be a complete implementation of a type
(without using re-use variables), an implementation of student might be coded
independently of an implementation of Person. In this case the re-use relation-
ship can be reversed, e.g.

impl Person::Impl {

state:

~Student aStudent = Student::Impl();
}

In this example an instance section is not needed (unless overriding is re-
quired), because all the methods of Person can be matched in the methods of
Student.

4 Re-Use of Independent Types
Similarly, given the following definition of the type DoubleEndedQueue,

type DoubleEndedQueue {

includes:

Queue;

instance:

// methods added to make the queue double ended
}

and an implementation DoubleEndedQueue: : Impl, here is a complete imple-
mentation of the type Queue:

impl Queue::Impl {

state:

“"DoubleEndedQueue deq = DoubleEndedQueue::Impl () ;

}
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The various implementations of a type are in principle independent of each other
and where appropriate the methods can be re-implemented from scratch without
code re-use. Since the types DoubleEndedQueue and Queue are not related at
the type level, no polymorphic problems arise.

5 Overriding Code

In Timor the OO concept of overriding, as an implementation concept, simply
involves providing a new implementation for a method in an instance section.
This overrides any clashing methods from re-use variables. If it is appropriate to
re-use some of the code from another implementation the latter is included as a
re-use variable, and its method(s) can be called in the normal way.

6 Implementing Views

In preparation for presenting an implementation of multiple and repeated inher-
itance, a trivial implementation of the view switchable 1s now illustrated:

enum SwitchState {off, on}

impl Switchable::Impl {

state:

SwitchState switch = off;
instance:

op void switchOn () {switch = on}

op void switchOff () {switch = off}

enq Boolean isSwitchedOn () {return switch}
}

}

7 Implementing Multiple and Repeated Inheritance

Re-use variables have the advantage that they re-use not only the methods of an
implementation but also its state. This greatly simplifies the implementation of
types which use repeated inheritance, since in such cases multiple versions of
state variables might be required. First the type Radio is implemented:
impl Radio {
state:
~"Switchable = Switchable::Impl ()
instance:
setStation(...);

// an implementation of the the remaining Radio methods

}
This, together with a similar implementation of cdplayer, is now re-used in the
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combined device, illustrating the re-use of state, as well as access to and the
overriding of methods of re-use variables:

impl RadioDoubleCdPlayer::Impl {
state:
"Radio r = Radio::Impl{();
~“"CdPlayer cdl = CdPlayer::Impl();
~"CdPlayer cd2 = CdPlayer::Impl();
SwitchState theSwitch = off;
Mode currentMode = playRadio;
instance:
op void switchOn() // overrides this method
{theSwitch = on; r.switchOn(); currentMode = playRadio}
// the radio is on by default
op void switchOff () {
case (currentMode) of {
(playRadio) {r.switchOff ();}
(playCD1) {cdl.switchOff ()}
(playCD2) {cd2.switchOff ();}
}
}

enq Boolean isSwitchedOn () {return theSwitch;}
op void changeMode (Mode m) {
case (m) of {
(playRadio) {cdl.switchOff(); cd2.switchOff();

r.switchOn () ;}

(playCD1) {r.switchOff (); cd2.switchOff();
cdl.switchOn () ;}
(playCD2) {r.switchOff (); cdl.switchOff();

cd2.switchOn () ;}
}

currentMode = m;
}
}

8 Implementing Diamond Inheritance
We apply re-use variables in what at first sight might appear to be the obvious
way to implement a StudentTutor.

impl StudentTutor::Impl {

state:
~"Student s;
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“Tutor t;
}

Although this syntactically matches the type definition, semantically it does not,
because each of the two re-use variables has its own state, i.e. there are two sets
of state variables for the person part of each! Including a further re-use variable
~pPerson p does not solve the problem as such, since any Student or Tutor
methods which might access the Person part would access the wrong Person
state. It would be possible to override these methods to produce a correct result,
but this would create considerable work for the programmer, which would in-
crease with each added attribute.”” This problem arises as a result of the lack of
genuine modularity behind the idea of subtyping, which binds extensions very
tightly (not as attachable units) to a base type.

Other consequences of this phenomenon have already been mentioned, viz.
the inability to add and remove attributes dynamically for individual objects.
Together, these issues, which are important in database applications, led to the
decision to introduce a new kind of type, which retains the key properties of
polymorphism but in a more modular way. This is described in the next chapter.

9 Implementing Types with a Common Abstract Ancestor

Since Timor does not bind implementations to their types in the form of sub-
classing, the Timor Collection Library (TCL) can be implemented in an unusual
way. The first type to be implemented is List, and the code of this implementa-
tion is declared as a re-use variable in standard implementations of all the other
concrete types, with remarkably few modifications. This is illustrated in chapter
13, which provides an outline of both the type definitions and implementations
of the TCL methods. Furthermore, application programmers are free to provide
their own implementations of the concrete TCL types and can also extend the
TCL type hierarchy and/or the TCL implementations.

However, this does not preclude the existence of other implementations of
individual types in the TCL (e.g. using a bit list to implement a fixed size set of
elements).

% It would of course be possible to implement StudentTutor from scratch.
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Chapter 9
Attribute Types

Timor provides a modular alternative to a particular aspect of conventional in-
heritance, in the form of attribute types. These are useful primarily when a base
type (a concrete type such as person) can potentially have subtypes which re-
quire add-on state, especially if for individual objects of the base type these can
change dynamically. Such types can often be defined largely in terms of Timor
abstract variables (corresponding to records in database systems, see chapter 5),
though additional methods can also be added.

Attribute types are not appropriate, for example, for defining subtypes
which primarily exhibit different variations on the behaviour of a base type (of-
ten, but not necessarily, an abstract type such as Collection) and which at the
individual object level have a state that is not logically extended by additional
state relating to its individual subtypes.

Timor's attribute types allow the add-on methods and state to be treated as
separate issues. Thus a type person can be declared (as described in chapter 5
section 2), and can be instantiated as an object in the usual way. A separate type
Studying, which contains the attributes required to make a pPerson into a stu-
dent (but without the person attributes) can also be defined and implemented.
This can be separately instantiated as an object and can then be attached to a
person object (and later detached). Other attribute types can be defined in the
same way (e.g. a type Tutoring) and can also be attached to the same person
object. In this way a studentTutor can be created without the problems associ-
ated with diamond inheritance. This is possible because, although the individual
attribute types have static definitions, there is no requirement (in contrast with
the subtyping technique) for a combined type to exist statically.

1  Defining and Implementing Attribute Types

Generally speaking attribute types are given adjectival names (although this is
only a convention), because they add additional information to a base type, just
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as adjectives add information to a noun. Hence instead of naming an attribute
Student, for example, it is more appropriately called studying, and when the
attribute is associated with a person instance, it is appropriate to call this a
StudyingPerson. However, such a naming scheme is simply by convention.

Here is a possible definition of a type Studying, which looks very similar
to the definition of the subtype student.

type Studying for Person {
instance:

String university;

Int studentId;

String faculty;

Date commencement;

String degree;

}

The keyword for indicates that a type is an attribute type and also indicates the
base type (here person) to which it can be attached. In this example an imple-
mentation, called studying::Impl, would be automatically produced by the
compiler. Implementations follow the normal pattern (see chapter 5 section 2).

Attribute types can be defined for other attributes. For example an attribute
pPartTime might be attached to the Tutoring attribute, to indicate a part-time
position as tutor.

The public methods of a base type can be accessed in an implementation of
the attribute type via the pseudo-variable base. Limiting the access in this way
ensures that no behaviourally non-conform accesses can take place, thereby
guaranteeing for other attributes attached to the same object that related prob-
lems cannot arise [10].

Attribute types can also be defined as for any; these can be attached to any
other type. Here is an example:

type Loanable for any ({

instance:

op void putOnLoan (Person* toWhom; Date loanDate);
op void returnFromLoan (Date returnDate);

Boolean currentlyLoaned; // an abstract variable
Date dueDate; // an abstract variable
enqg Int daysOverdue() ;

enq Person* borrower () ;

enq Person* previousBorrower () ;

enq Date datelastReturned() ;
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}
The pseudo-variable base cannot be used in connection with for any.

2  Static Use of Attributes

Attributes can be composed statically into other types, as the following example
illustrates.

type DoubleStudyingTutor ({
extends:

{Studying sl, s2; Tutoring;} Person;
}

This can be instantiated and accessed in the normal way, e.g.

Person p = DoubleStudyingTutor::Impl ()

String theUni = p.s2.university;

Because attribute types and implementations are simply add-on units which do
not include the base type, they can easily be used to solve the problems previ-
ously encountered in implementing diamond inheritance, as the following illus-
trates:

impl DoubleStudyingTutor::Impl {
state:

~“Person;

~Studying sl;

~Studying s2;

~“Tutoring t;

}

3 Instantiating Attribute Types

Attribute types can be instantiated as values or as objects, but not as modules
known to the operating system, since neither ModelOS nor conventional operat-
ing systems support the idea of modules with add-on sections. However static
types which include attributes can be created as modules.

Once they have been instantiated as objects, attributes can be attached dy-
namically to other objects.

4 Attaching Attributes Dynamically to Objects
An attribute can be attached to an object of its base type as follows:

Person* p = new Person::Impl();
Studying* s = new Studying::Impl () ;
p += s; // attach s to p
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Given a further attribute type Tutoring, this could also be attached to the same

Person, €.8.

Tutoring* t = new Tutoring::Impl ();
p += t; // attach t to p

The result is a studying tutoring person, equivalent to StudentTutor, but with-
out the complications of diamond inheritance. Multiple attributes of the same
type can be dynamically added to the same base object. Thus if the student de-
scribed above were enrolled in two universities, a second Studying attribute
could be added:

Studying* s2 = new Studying::Impl();
p += s2; // attach s to p

5 Removing Attributes from Objects
An attribute can be removed from an object without deleting it, e.g.
p -= s;
In this case it might be reattached to the same or a different object later. Howev-

er, an attribute can only be attached to one object at a time. Failure to follow this
rule leads to a run-time error.

Alternatively an attribute can be removed from its base object simply by
deleting it via its own object reference, e.g.

Person* p = new Person::Impl () ;
Studying* s = new Studying::Impl () ;
p += s;

delete(s) ;

If an attempt is made to access a previously attached but then deleted attribute,
an exception is thrown.

6  Casting with Attributes

For the attribute relationships described in the previous section, explicit casts
can succeed in both directions. For example to cast between Person and
studying the cast would have a pattern such as the following:

Studying* s = new Studying::Impl () ;

String aName;
cast (s) as {
(Person* p) {aName = p.name;}

// only executed if s is attached to a Person instance
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}
and similarly

Person* p = new Person::Impl () ;

cast (p) as {
[Studying* s] {if (s.uni == "Oxford") {...};}
}

In the second example the cast clause uses square